An AR-assisted Deep Reinforcement Learning-based approach towards mutual-cognitive safe human-robot interaction

被引:51
|
作者
Li, Chengxi [1 ,2 ]
Zheng, Pai [1 ,2 ]
Yin, Yue [1 ]
Pang, Yat Ming [1 ,2 ]
Huo, Shengzeng [1 ,3 ]
机构
[1] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hong Kong, Peoples R China
[2] Hong Kong Sci Pk, Lab Artificial Intelligence Design, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Peoples R China
关键词
Smart manufacturing; Human robot interaction; Augmented reality; Deep reinforcement learning; Manufacturing safety;
D O I
10.1016/j.rcim.2022.102471
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
With the emergence of Industry 5.0, the human-centric manufacturing paradigm requires manufacturing equipment (robots, etc.) interactively assist human workers to deal with dynamic and complex production tasks. To achieve symbiotic human-robot interaction (HRI), the safety issue serves as a prerequisite foundation. Regarding the growing individualized demand of manufacturing tasks, the conventional rule-based safe HRI measures could not well address the safety requirements due to inflexibility and lacking synergy. To fill the gap, this work proposes a mutual-cognitive safe HRI approach including worker visual augmentation, robot velocity control, Digital Twin-enabled motion preview and collision detection, and Deep Reinforcement Learning-based robot collision avoidance motion planning in the Augmented Reality-assisted manner. Finally, the feasibility of the system design and the performance of the proposed approach are validated by establishing and executing the prototype HRI system in a practical scene.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Psychophysics-Based Cognitive Reinforcement Learning to Optimize Human-Robot Interaction in Power-Assisted Object Manipulation
    Rahman, S. M. Mizanoor
    INTELLIGENT HUMAN SYSTEMS INTEGRATION 2021, 2021, 1322 : 56 - 62
  • [12] Affordance-Based Human-Robot Interaction With Reinforcement Learning
    Munguia-Galeano, Francisco
    Veeramani, Satheeshkumar
    Hernandez, Juan David
    Wen, Qingmeng
    Ji, Ze
    IEEE ACCESS, 2023, 11 : 31282 - 31292
  • [13] Impedance Learning-Based Adaptive Control for Human-Robot Interaction
    Sharifi, Mojtaba
    Azimi, Vahid
    Mushahwar, Vivian K.
    Tavakoli, Mahdi
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2022, 30 (04) : 1345 - 1358
  • [14] SMARTTALK: A Learning-based Framework for Natural Human-Robot Interaction
    Fabbri, Cameron
    Sattar, Junaed
    2016 13TH CONFERENCE ON COMPUTER AND ROBOT VISION (CRV), 2016, : 376 - 382
  • [15] Koopman Operator-Based Knowledge-Guided Reinforcement Learning for Safe Human-Robot Interaction
    Sinha, Anirban
    Wang, Yue
    FRONTIERS IN ROBOTICS AND AI, 2022, 9
  • [16] Deep Learning-based Head Pose Estimation for Enhancing Nonverbal Communication in Human-Robot Interaction
    Yoon, Chan Young
    Lim, Yoongu
    Lee, DongWook
    Ko, KwangEun
    2023 32ND IEEE INTERNATIONAL CONFERENCE ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION, RO-MAN, 2023, : 908 - 913
  • [17] A Safe Training Approach for Deep Reinforcement Learning-based Traffic Engineering
    Wang, Linghao
    Wang, Miao
    Zhang, Yujun
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1450 - 1455
  • [18] Augmented Reality-assisted Mutual Cognitive System for Human-Robot Interaction Safety Concerns
    Zheng P.
    Li C.
    Yin Y.
    Zhang R.
    Bao J.
    Wang B.
    Xie H.
    Wang L.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (06): : 173 - 184
  • [19] Deep Learning-based Multimodal Control Interface for Human-Robot Collaboration
    Liu, Hongyi
    Fang, Tongtong
    Zhou, Tianyu
    Wang, Yuquan
    Wang, Lihui
    51ST CIRP CONFERENCE ON MANUFACTURING SYSTEMS, 2018, 72 : 3 - 8
  • [20] Robot behavior adaptation for human-robot interaction based on policy gradient reinforcement learning
    Mitsunaga, N
    Smith, C
    Kanda, T
    Ishiguro, H
    Hagita, N
    2005 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2005, : 1594 - 1601