Optimization strategies of high-entropy alloys for electrocatalytic applications

被引:70
|
作者
Xiao, Liyuan [1 ]
Wang, Zhenlu [1 ]
Guan, Jingqi [1 ]
机构
[1] Jilin Univ, Inst Phys Chem, Coll Chem, Changchun 130021, Peoples R China
基金
中国国家自然科学基金;
关键词
HYDROGEN EVOLUTION; OXYGEN EVOLUTION; PROGRESS; CONVERSION; BEHAVIOR; CO2;
D O I
10.1039/d3sc04962k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-entropy alloys (HEAs) are expected to become one of the most promising functional materials in the field of electrocatalysis due to their site-occupancy disorder and lattice order. The chemical complexity and component tunability make it possible for them to obtain a nearly continuous distribution of adsorption energy curve, which means that the optimal adsorption strength and maximum activity can be obtained by a multi-alloying strategy. In the last decade, a great deal of research has been performed on the synthesis, element selection and catalytic applications of HEAs. In this review, we focus on the analysis and summary of the advantages, design ideas and optimization strategies of HEAs in electrocatalysis. Combined with experiments and theories, the advantages of high activity and high stability of HEAs are explored in depth. According to the classification of catalytic reactions, how to design high-performance HEA catalysts is proposed. More importantly, efficient strategies for optimizing HEA catalysts are provided, including element regulation, defect regulation and strain engineering. Finally, we point out the challenges that HEAs will face in the future, and put forward some personal proposals. This work provides a deep understanding and important reference for electrocatalytic applications of HEAs. This review summarizes the synthesis methods, characterization methods, research progress and regulation strategies of HAEs in the field of electrocatalytic HER, HOR, OER, ORR, CO2RR, NRR and AOR, providing deep understanding for future applications.
引用
收藏
页码:12850 / 12868
页数:19
相关论文
共 50 条
  • [41] Progress in High-Entropy Alloys
    Michael C. Gao
    JOM, 2014, 66 : 1964 - 1965
  • [42] Progress in High-Entropy Alloys
    Gao, Michael C.
    JOM, 2014, 66 (10) : 1964 - 1965
  • [43] High-entropy alloys.
    Kozak, Roksolana
    Steurer, Walter
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2013, 69 : S497 - S497
  • [44] An overview of high-entropy alloys
    Ibrahim, Pshdar Ahmed
    Ozkul, Iskender
    Canbay, Canan Aksu
    EMERGENT MATERIALS, 2022, 5 (06) : 1779 - 1796
  • [45] Nanocrystalline high-entropy alloys
    Koch, Carl C.
    JOURNAL OF MATERIALS RESEARCH, 2017, 32 (18) : 3435 - 3444
  • [46] Orientational high-entropy alloys
    Kumar, Nitesh
    Subramaniam, Anandh
    PHILOSOPHICAL MAGAZINE LETTERS, 2014, 94 (12) : 749 - 754
  • [47] Progress in High-Entropy Alloys
    Gao, Michael C.
    JOM, 2013, 65 (12) : 1749 - 1750
  • [48] An overview of high-entropy alloys
    Pshdar Ahmed Ibrahim
    İskender Özkul
    Canan Aksu Canbay
    Emergent Materials, 2022, 5 : 1779 - 1796
  • [49] Refractory high-entropy alloys
    Senkov, O. N.
    Wilks, G. B.
    Miracle, D. B.
    Chuang, C. P.
    Liaw, P. K.
    INTERMETALLICS, 2010, 18 (09) : 1758 - 1765
  • [50] Application of High-Entropy Alloys
    Gromov V.E.
    Shlyarova Y.A.
    Konovalov S.V.
    Vorob’ev S.V.
    Peregudov O.A.
    Steel in Translation, 2021, 51 (10) : 700 - 704