Exosomes derived from umbilical cord-mesenchymal stem cells inhibit the NF-κB/MAPK signaling pathway and reduce the inflammatory response to promote recovery from spinal cord injury

被引:5
|
作者
Luan, Zhiwei [1 ,3 ]
Liu, Jingsong [1 ]
Li, Mi [1 ]
Wang, Yangyang [1 ]
Wang, Yansong [1 ,2 ,4 ]
机构
[1] Harbin Med Univ, Affiliated Hosp 1, Dept Orthoped Surg, Harbin, Peoples R China
[2] Harbin Med Univ, NHC Key Lab Cell Transplantat, Harbin, Peoples R China
[3] Chinese Minist Educ, Key Lab Myocardial Ischemia, Harbin, Peoples R China
[4] Harbin Med Univ, Heilongjiang Prov Key Lab Hard Tissue Dev & Regene, Harbin, Peoples R China
基金
黑龙江省自然科学基金;
关键词
Spinal cord injury; Transplanted mesenchymal stem cells; Exosomes; Inflammation; Sequencing; MACROPHAGES;
D O I
10.1186/s13018-024-04651-w
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Spinal cord injury (SCI) is a serious traumatic disease of the central nervous system and leads to incomplete or complete loss of the body's autonomous motor and sensory functions, seriously endangering human health. Recently, exosomes have been proposed as important substances in cell-to-cell interactions. Mesenchymal stem cell (MSC)-derived exosomes exert good therapeutic effects and play a crucial role in neurological damage repair. However, the detailed mechanisms underlying their effects remain unknown. Herein, we found that compared to SCI rats, those subjected to umbilical cord MSC (UC-MSC)-derived exosomes injection showed an improved motor ability. Nevertheless, the transcriptome of BV2 microglia in different treatment groups indicated that the action pathway of exosomes might be the NF-kappa B/MAPK pathway. Additionally, exosomes from UC-MSCs could inhibit P38, JNK, ERK, and P65 phosphorylation in BV2 microglia and SCI rat tissues. Moreover, exosomes could inhibit apoptosis and inflammatory reaction and reactive oxygen species (ROS) production of BV2 microglia in vitro and in vivo. In conclusion, UC-MSCs-derived exosomes might protect SCI in rats by inhibiting inflammatory response via the NF-kappa B/MAPK signaling pathway, representing novel treatment targets or approaches for SCI.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Exosomes derived from umbilical cord-mesenchymal stem cells inhibit the NF-κB/MAPK signaling pathway and reduce the inflammatory response to promote recovery from spinal cord injury
    Zhiwei Luan
    Jingsong Liu
    Mi Li
    Yangyang Wang
    Yansong Wang
    Journal of Orthopaedic Surgery and Research, 19
  • [2] Human Umbilical Cord Mesenchymal Stem Cells Derived Exosomes Promote Neurological Function Recovery in a Rat Spinal Cord Injury Model
    Jian Kang
    Yan Guo
    Neurochemical Research, 2022, 47 : 1532 - 1540
  • [3] Human Umbilical Cord Mesenchymal Stem Cells Derived Exosomes Promote Neurological Function Recovery in a Rat Spinal Cord Injury Model
    Kang, Jian
    Guo, Yan
    NEUROCHEMICAL RESEARCH, 2022, 47 (06) : 1532 - 1540
  • [4] Exosomes Derived From miR-133b-Modified Mesenchymal Stem Cells Promote Recovery After Spinal Cord Injury
    Li, Dong
    Zhang, Peng
    Yao, Xiyang
    Li, Haiying
    Shen, Haitao
    Li, Xiang
    Wu, Jiang
    Lu, Xiaocheng
    FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [5] Human umbilical cord mesenchymal stem cell-derived exosomes inhibit ovarian granulosa cells inflammatory response through inhibition of NF-κB signaling in polycystic ovary syndrome
    Zhao, Yuanyuan
    Pan, Shuhong
    Wu, Xiaohua
    JOURNAL OF REPRODUCTIVE IMMUNOLOGY, 2022, 152
  • [6] Intravenous infusion of the exosomes derived from human umbilical cord mesenchymal stem cells enhance neurological recovery after traumatic brain injury via suppressing the NF-κB pathway
    Zhang, Zhen-Wen
    Wei, Pan
    Zhang, Gui-Jun
    Yan, Jing-Xing
    Zhang, Sai
    Liang, Jin
    Wang, Xiao-Li
    OPEN LIFE SCIENCES, 2022, 17 (01): : 189 - 201
  • [7] Bone marrow mesenchymal stem cells-derived exosomes reduce apoptosis and inflammatory response during spinal cord injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway
    Fan, Liying
    Dong, Jun
    He, Xijing
    Zhang, Chun
    Zhang, Ting
    HUMAN & EXPERIMENTAL TOXICOLOGY, 2021, 40 (10) : 1612 - 1623
  • [8] Exosomes derived from miR-544-modified mesenchymal stem cells promote recovery after spinal cord injury
    Li, Chenggnag
    Li, Xiao
    Zhao, Bichun
    Wang, Chunfang
    ARCHIVES OF PHYSIOLOGY AND BIOCHEMISTRY, 2020, 126 (04) : 369 - 375
  • [9] Exosomes derived from human umbilical cord mesenchymal stem cells promote osteogenesis through the AKT signaling pathway in postmenopausal osteoporosis
    Ren, Shi-Wei
    Cao, Guang-Qing
    Zhu, Qing-Run
    He, Min-Gang
    Wu, Fang
    Kong, Su-Mei
    Zhang, Zhao-Yan
    Wang, Qiang
    Wang, Feng
    AGING-US, 2022, 14 (24): : 10125 - 10136
  • [10] Exosomes Derived from Mesenchymal Stem Cells: Therapeutic Opportunities for Spinal Cord Injury
    Zhang, C.
    BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2024, 176 (06) : 716 - 721