Human Umbilical Cord Mesenchymal Stem Cells Derived Exosomes Promote Neurological Function Recovery in a Rat Spinal Cord Injury Model

被引:0
|
作者
Jian Kang
Yan Guo
机构
[1] Liaocheng People’s Hospital,Department of Neurology
来源
Neurochemical Research | 2022年 / 47卷
关键词
Spinal cord injury; Exosome; hUC-MSC; Wnt signaling pathway; Apoptosis;
D O I
暂无
中图分类号
学科分类号
摘要
Spinal cord injury (SCI) often leads to personal and social-economic consequences with limited therapeutic options. Exosomes derived from human umbilical cord mesenchymal stem cells (hUC-MSC) have been explored as a promising alternative to cell therapies. In the current study, we explored the mechanism of hUC-MSC derived exosome's ameliorative effect on the spinal cord injury by combining data from in vivo contusion SCI model and in vitro cell viability of PC12 cell line stimulated with lipopolysaccharide. Intravenous administration of hUC-MSC derived exosomes dramatically improved motor function of Sprague–Dawley rats after SCI, with reduced apoptosis demonstrated by increased expression of B-cell lymphoma 2 (BCL2), decreased BCL2 associated X, apoptosis regulator (Bax), and reduced cleaved caspase 9. Conversely, exosome treatment reduced the transcription levels of astrocytes marker GFAP and microglia marker IBA1, suggesting a reduced inflammatory state from SCI injury. Furthermore, exosome treatment in vitro increased the cell viability of PC12 cells. Exosome application activated the Wnt/β-Catenin signaling in the spinal cord. Our study demonstrated that hUC-MSC derived exosomes could improve motor function through anti-apoptosis and anti-inflammatory effects. BCL2/Bax and Wnt/β-catenin signaling pathways were involved in the SCI process and could potentially mediate the protective effect of hUC-MSC derived exosomes.
引用
收藏
页码:1532 / 1540
页数:8
相关论文
共 50 条
  • [1] Human Umbilical Cord Mesenchymal Stem Cells Derived Exosomes Promote Neurological Function Recovery in a Rat Spinal Cord Injury Model
    Kang, Jian
    Guo, Yan
    NEUROCHEMICAL RESEARCH, 2022, 47 (06) : 1532 - 1540
  • [2] Application of Human Umbilical Cord Mesenchymal Stem Cells in Rat Spinal Cord Injury Model
    Sun, Xue-Cheng
    Wang, Hu
    Ma, Xu
    Xia, Hong-Fei
    ASAIO JOURNAL, 2023, 69 (06) : E256 - E264
  • [3] Human umbilical cord mesenchymal stem cell-derived exosomes promote neurological function recovery in rat after traumatic brain injury by inhibiting the activation of microglia and astrocyte
    Cui, Lianxu
    Luo, Wei
    Jiang, Wenkang
    Li, Haomin
    Xu, Junrong
    Liu, Xiaocui
    Wang, Bingyun
    Wang, Jinhui
    Chen, Guoqiang
    REGENERATIVE THERAPY, 2022, 21 : 282 - 287
  • [4] Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury
    CAO Fujiang and FENG Shiqing Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjin China
    中华医学杂志(英文版), 2009, (02) : 225 - 231
  • [5] Application of Human Umbilical Cord Mesenchymal Stem Cells in Spinal Cord Injury
    Yang, Peng
    Li, Yun
    Zhang, Jing-Tao
    Wang, Lin-Feng
    Shen, Yong
    JOURNAL OF BIOMATERIALS AND TISSUE ENGINEERING, 2017, 7 (05) : 393 - 400
  • [6] Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury
    Fu-jiang, Cao
    Shi-qing, Feng
    CHINESE MEDICAL JOURNAL, 2009, 122 (02) : 225 - 231
  • [8] Functional recovery and microenvironmental alterations in a rat model of spinal cord injury following human umbilical cord blood-derived mesenchymal stem cells transplantation
    Zhang, Hongtao
    Yang, Huilin
    Zhang, Huanxiang
    Qu, Jing
    NEURAL REGENERATION RESEARCH, 2010, 5 (03) : 165 - 170
  • [9] Exosomes derived from GIT1-overexpressing bone marrow mesenchymal stem cells promote traumatic spinal cord injury recovery in a rat model
    Luo, Yongjun
    Xu, Tao
    Liu, Wei
    Rong, Yuluo
    Wang, Jiaxing
    Fan, Jin
    Yin, Guoyong
    Cai, Weihua
    INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2021, 131 (02) : 170 - 182
  • [10] Exosomes derived from miR-544-modified mesenchymal stem cells promote recovery after spinal cord injury
    Li, Chenggnag
    Li, Xiao
    Zhao, Bichun
    Wang, Chunfang
    ARCHIVES OF PHYSIOLOGY AND BIOCHEMISTRY, 2020, 126 (04) : 369 - 375