Accurate and fast computations with Green matrices✩

被引:5
|
作者
Delgado, Jorge [1 ]
Pena, Guillermo [2 ]
Pena, Juan Manuel [3 ]
机构
[1] Univ Zaragoza, Dept Appl Math, Zaragoza 50018, Spain
[2] Univ Zaragoza, Dept Econ Anal, Zaragoza 50005, Spain
[3] Univ Zaragoza, Dept Appl Math, Zaragoza 50009, Spain
关键词
Accurate computations; Green matrix;
D O I
10.1016/j.aml.2023.108778
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides a linear time complexity method to obtain the bidiagonal decomposition of Green matrices with high relative accuracy. In addition, when the Green matrix is nonsingular and totally positive, this bidiagonal decomposition can be used to compute the eigenvalues, the inverse and the solution of some linear system of equations with high relative accuracy. A numerical example illustrates the advantages of this method. & COPY; 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Accurate computations with matrices related to bases {tieλt}
    Mainar, E.
    Pena, J. M.
    Rubio, B.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (04)
  • [22] Accurate computations with some Catalan-Stieltjes matrices
    Niu, Benxia
    Zheng, Bing
    CALCOLO, 2024, 61 (04)
  • [23] Accurate Computations with Collocation and Wronskian Matrices of Jacobi Polynomials
    Mainar, E.
    Pena, J. M.
    Rubio, B.
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (03)
  • [24] Accurate computations with matrices related to bases {tieλt}
    E. Mainar
    J. M. Peña
    B. Rubio
    Advances in Computational Mathematics, 2022, 48
  • [25] Accurate computations of matrices with bidiagonal decomposition using methods for totally positive matrices
    Barreras, A.
    Pena, J. M.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (03) : 413 - 424
  • [26] Total positivity and accurate computations with Gram matrices of Bernstein bases
    E. Mainar
    J. M. Peña
    B. Rubio
    Numerical Algorithms, 2022, 91 : 841 - 859
  • [27] Accurate computations of eigenvalues of quasi-Cauchy-Vandermonde matrices
    Yang, Zhao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 622 : 268 - 293
  • [28] Total positivity and accurate computations with Gram matrices of Bernstein bases
    Mainar, E.
    Pena, J. M.
    Rubio, B.
    NUMERICAL ALGORITHMS, 2022, 91 (02) : 841 - 859
  • [29] ACCURATE COMPUTATIONS WITH TOTALLY POSITIVE BERNSTEIN-VANDERMONDE MATRICES
    Marco, Ana
    Martinez, Jose-Javier
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 357 - 380
  • [30] Accurate and efficient computations with Wronskian matrices of Bernstein and related bases
    Mainar, Esmeralda
    Pena, Juan M.
    Rubio, Beatriz
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2022, 29 (03)