Chirped optical solitons and stability analysis of the nonlinear Schrodinger equation with nonlinear chromatic dispersion

被引:49
|
作者
Mathanaranjan, Thilagarajah [1 ]
Hashemi, Mir Sajjad [2 ]
Rezazadeh, Hadi [3 ]
Akinyemi, Lanre [4 ]
Bekir, Ahmet [5 ]
机构
[1] Univ Jaffna, Dept Math & Stat, Kokuvil East, Sri Lanka
[2] Biruni Univ, Dept Comp Engn, TR-34010 Istanbul, Turkiye
[3] Amol Univ Special Modern Technol, Fac Engn Technol, Amol, Iran
[4] Lafayette Coll, Dept Math, Easton, PA USA
[5] Neighborhood Akcaglan, Imarli St 28-4, TR-26030 Eskisehir, Turkiye
关键词
nonlinear chromatic dispersion; quadratic-cubic law; chirped solitons; modulational instability analysis;
D O I
10.1088/1572-9494/ace3b0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The present paper aims to investigate the chirped optical soliton solutions of the nonlinear Schrodinger equation with nonlinear chromatic dispersion and quadratic-cubic law of refractive index. The exquisite balance between the chromatic dispersion and the nonlinearity associated with the refractive index of a fiber gives rise to optical solitons, which can travel down the fiber for intercontinental distances. The effective technique, namely, the new extended auxiliary equation method is implemented as a solution method. Different types of chirped soliton solutions including dark, bright, singular and periodic soliton solutions are extracted from the Jacobi elliptic function solutions when the modulus of the Jacobi elliptic function approaches to one or zero. These obtained chirped optical soliton solutions might play an important role in optical communication links and optical signal processing systems. The stability of the system is examined in the framework of modulational instability analysis.
引用
收藏
页数:9
相关论文
共 50 条