?-Paired dominating graphs of lollipop, umbrella and coconut graphs

被引:0
|
作者
Eakawinrujee, Pannawat [1 ]
Trakultraipruk, Nantapath [1 ]
机构
[1] Thammasat Univ, Fac Sci & Technol, Dept Math & Stat, Pathum Thani 12120, Thailand
关键词
paired dominating graph; paired domination number; gamma graph; lollipop graph; umbrella graph; coconut graph; PATHS;
D O I
10.5614/ejgta.2023.11.1.6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A paired dominating set of a graph G is a dominating set whose induced subgraph has a perfect matching. The paired domination number 7pr(G) of G is the minimum cardinality of a paired dom-inating set. A paired dominating set D is a 7pr(G)-set if D = 7pr(G). The 7-paired dominating graph PD,y(G) of G is the graph whose vertex set is the set of all 7pr(G)-sets, and two 7pr(G)-sets D1 and D2 are adjacent in PD,y(G) if D2 = (D1 \ {u}) U {v} for some u E D1 and v E/ D1. This paper determines the paired domination numbers of lollipop graphs, umbrella graphs, and coconut graphs. We also consider the 7-paired dominating graphs of those three graphs.
引用
收藏
页码:65 / 79
页数:15
相关论文
共 50 条
  • [21] Spectral characterizations of lollipop graphs
    Haemers, Willem H.
    Liu, Xiaogang
    Zhang, Yuanping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) : 2415 - 2423
  • [22] Closeness Centralities of Lollipop Graphs
    Dangalchev, Chavdar
    COMPUTER JOURNAL, 2023, 67 (06): : 2020 - 2029
  • [23] Vertices in all minimum paired-dominating sets of block graphs
    Chen, Lei
    Lu, Changhong
    Zeng, Zhenbing
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (03) : 176 - 191
  • [24] Computing a minimum paired-dominating set in strongly orderable graphs
    Pradhan, D.
    Panda, B. S.
    DISCRETE APPLIED MATHEMATICS, 2019, 253 : 37 - 50
  • [25] F-Paired Dominating Graphs of Some Paths and Some Cycles
    Eakawinrujee, Pannawat
    Trakultraipruk, Nantapath
    THAI JOURNAL OF MATHEMATICS, 2023, : 1 - 11
  • [26] Vertices in all minimum paired-dominating sets of block graphs
    Lei Chen
    Changhong Lu
    Zhenbing Zeng
    Journal of Combinatorial Optimization, 2012, 24 : 176 - 191
  • [27] On the (signless) Laplacian spectral characterization of the line graphs of lollipop graphs
    Guo, Guangquan
    Wang, Guoping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (12) : 4595 - 4605
  • [28] Interlace polynomials of lollipop and tadpole graphs
    Eubanks-Turner, Christina L.
    Cole, Kathryn
    Lee, Megan
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (01) : 213 - 226
  • [29] Spectral characterizations of signed lollipop graphs
    Belardo, Francesco
    Petecki, Pawel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 480 : 144 - 167
  • [30] Lollipop graphs are extremal for commute times
    Jonasson, J
    RANDOM STRUCTURES & ALGORITHMS, 2000, 16 (02) : 131 - 142