Global well-posedness, scattering and blow-up for the generalized Boussinesq equation in high dimensions below the ground state energy

被引:0
|
作者
Chen, Jie [1 ]
Guo, Boling [1 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Generalized Boussinesq equation; Finite time blow-up; Scattering; NONLINEAR SCHRODINGER-EQUATION; SOLITARY WAVES; INSTABILITY; EXISTENCE; STABILITY;
D O I
10.1016/j.jmaa.2023.127218
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the generalized Boussinesq equation in energy space. For spatial dimensions d > 3, nonlinear exponent alpha + 1 E [1 + 4/d, 1 + 4/(d - 2)), initial data (u0, u1), we clarify the longtime behavior of the solution with energy E(u0, u1) below the ground state energy E(Qd,alpha, 0). It depends on K(u0) = IIou0IId alpha/2-2 L2 IIu0II2-(d-2)alpha/2. For K(u0) > K(Qd,alpha), the solution blows up in finite time. For K(u0) < K(Qd,alpha), the solution is global and scatters to a linear solution in energy space if u0, u1 are radial functions. To show the scattering, we use the concentration-compactness argument of Kenig-Merle [15] and the Morawetz-virial type estimate obtained in [7].
引用
收藏
页数:28
相关论文
共 50 条
  • [11] Well-posedness and blow-up phenomena for the generalized Degasperis-Procesi equation
    Wu, Xinglong
    Yin, Zhaoyang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (01) : 136 - 146
  • [12] Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation
    Luiz G. Farah
    Journal of Evolution Equations, 2016, 16 : 193 - 208
  • [13] Well-posedness, blow-up phenomena, and global solutions for the b-equation
    Escher, Joachim
    Yin, Zhaoyang
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 624 : 51 - 80
  • [14] Blow-up and scattering of solution for a generalized Boussinesq equation
    Wang, Ying
    Mu, Chunlai
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (02) : 1131 - 1141
  • [15] Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation
    Kenig, Carlos E.
    Merle, Frank
    ACTA MATHEMATICA, 2008, 201 (02) : 147 - 212
  • [16] Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation
    Yin, ZY
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2004, 3 (03) : 501 - 508
  • [17] Global well-posedness, regularity and blow-up for the β-CCF model
    Ferreir, Lucas C. F.
    Moitinho, Valter V. C.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 344 : 230 - 259
  • [18] THE SUPERCRITICAL GENERALIZED KDV EQUATION: GLOBAL WELL-POSEDNESS IN THE ENERGY SPACE AND BELOW
    Farah, Luiz G.
    Linares, Felipe
    Pastor, Ademir
    MATHEMATICAL RESEARCH LETTERS, 2011, 18 (02) : 357 - 377
  • [19] Local well-posedness and blow-up for an inhomogeneous nonlinear heat equation
    Alessa, Rasha
    Alshehri, Aisha
    Altamimi, Haya
    Majdoub, Mohamed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) : 5264 - 5272
  • [20] WELL-POSEDNESS AND BLOW-UP FOR AN IN-HOMOGENEOUS SEMILINEAR PARABOLIC EQUATION
    Majdoub, Mohamed
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2021, 13 (01): : 85 - 100