Global well-posedness, scattering and blow-up for the generalized Boussinesq equation in high dimensions below the ground state energy

被引:0
|
作者
Chen, Jie [1 ]
Guo, Boling [1 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Generalized Boussinesq equation; Finite time blow-up; Scattering; NONLINEAR SCHRODINGER-EQUATION; SOLITARY WAVES; INSTABILITY; EXISTENCE; STABILITY;
D O I
10.1016/j.jmaa.2023.127218
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the generalized Boussinesq equation in energy space. For spatial dimensions d > 3, nonlinear exponent alpha + 1 E [1 + 4/d, 1 + 4/(d - 2)), initial data (u0, u1), we clarify the longtime behavior of the solution with energy E(u0, u1) below the ground state energy E(Qd,alpha, 0). It depends on K(u0) = IIou0IId alpha/2-2 L2 IIu0II2-(d-2)alpha/2. For K(u0) > K(Qd,alpha), the solution blows up in finite time. For K(u0) < K(Qd,alpha), the solution is global and scatters to a linear solution in energy space if u0, u1 are radial functions. To show the scattering, we use the concentration-compactness argument of Kenig-Merle [15] and the Morawetz-virial type estimate obtained in [7].
引用
收藏
页数:28
相关论文
共 50 条
  • [1] GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION
    杨凌燕
    李晓光
    吴永洪
    Louis CACCETTA
    Acta Mathematica Scientia(English Series), 2017, 37 (04) : 941 - 948
  • [2] GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION
    Yang, Lingyan
    Li, Xiaoguang
    Wu, Yonghong
    Caccetta, Louis
    ACTA MATHEMATICA SCIENTIA, 2017, 37 (04) : 941 - 948
  • [3] Well-posedness and blow-up properties for the generalized Hartree equation
    Arora, Anudeep Kumar
    Roudenko, Svetlana
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2020, 17 (04) : 727 - 763
  • [4] WELL-POSEDNESS AND SCATTERING FOR THE GENERALIZED BOUSSINESQ EQUATION
    Chen, Jie
    Guo, Boling
    Shao, Jie
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (01) : 133 - 161
  • [5] Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrodinger equation
    Farah, Luiz G.
    JOURNAL OF EVOLUTION EQUATIONS, 2016, 16 (01) : 193 - 208
  • [6] GLOBAL WELL-POSEDNESS, SCATTERING AND BLOW-UP FOR THE ENERGY-CRITICAL, FOCUSING HARTREE EQUATION IN THE RADIAL CASE
    Miao, Changxing
    Xu, Guixiang
    Zhao, Lifeng
    COLLOQUIUM MATHEMATICUM, 2009, 114 (02) : 213 - 236
  • [7] On the Well-Posedness and Blow-Up for a Semilinear Biparabolic Equation
    Vo Van Au
    Yong Zhou
    Donal O’Regan
    Mediterranean Journal of Mathematics, 2022, 19
  • [8] On the Well-Posedness and Blow-Up for a Semilinear Biparabolic Equation
    Vo Van Au
    Zhou, Yong
    O'Regan, Donal
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [9] WELL-POSEDNESS AND BLOW-UP PHENOMENA FOR A GENERALIZED CAMASSA-HOLM EQUATION
    Li, Jinlu
    Yin, Zhaoyang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (10) : 5493 - 5508
  • [10] Local well-posedness and blow-up phenomena of the generalized short pulse equation
    Guo, Yingying
    Yin, Zhaoyang
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (04)