Digital image analysis and artificial intelligence in pathology diagnostics-the Swiss view

被引:0
|
作者
Berezowska, Sabina [1 ]
Cathomas, Gieri [2 ]
Grobholz, Rainer [3 ,4 ]
Henkel, Maurice [5 ,6 ,7 ]
Jochum, Wolfram [8 ]
Koelzer, Viktor H. [9 ,10 ]
Kreutzfeldt, Mario [11 ,12 ]
Mertz, Kirsten D. [13 ]
Rossle, Matthias [14 ]
Soldini, Davide [15 ]
Zlobec, Inti [16 ]
Janowczyk, Andrew [17 ,18 ,19 ]
机构
[1] CHU Vaudois CHUV, Inst Univ Pathol, Rue Bugnon 25, CH-1011 Lausanne, Switzerland
[2] Univ Bern, Inst Tissue Med & Pathol, Bern, Switzerland
[3] Univ Zurich, Med Fac, Zurich, Switzerland
[4] Cantonal Hosp Aarau, Inst Pathol, Aarau, Switzerland
[5] Univ Hosp Basel, Res & Analyt Serv, Basel, Switzerland
[6] Univ Hosp Basel, Inst Radiol, Basel, Switzerland
[7] Univ Basel, Basel, Switzerland
[8] Cantonal Hosp St Gallen, Inst Pathol, St Gallen, Switzerland
[9] Univ Zurich, Dept Pathol & Mol Pathol, Zurich, Switzerland
[10] Univ Hosp Zurich, Zurich, Switzerland
[11] Univ Geneva, Dept Pathol & Immunol, Geneva, Switzerland
[12] Geneva Univ Hosp, Div Clin Pathol, Geneva, Switzerland
[13] Cantonal Hosp Baselland, Inst Pathol, Liestal, Switzerland
[14] Luzerner Kantonsspital, Pathol, Luzern 16, Switzerland
[15] Pathol Zentrum Zurich Med, Zurich, Switzerland
[16] Univ Bern, Inst Tissue Med & Pathol, Bern, Switzerland
[17] Emory Univ, Dept Biomed Engn, Atlanta, GA 30322 USA
[18] Geneva Univ Hosp, Div Precis Oncol, Dept Oncol, Geneva, Switzerland
[19] Geneva Univ Hosp, Div Clin Pathol, Dept Diagnost, Geneva, Switzerland
来源
PATHOLOGIE | 2023年 / 44卷 / 03期
关键词
Pathology; Digitalization; Image analysis; Artificial intelligence; Delphi process;
D O I
10.1007/s00292-023-01262-w
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Digital pathology (DP) is increasingly entering routine clinical pathology diagnostics. As digitization of the routine caseload advances, implementation of digital image analysis algorithms and artificial intelligence tools becomes not only attainable, but also desirable in daily sign out. The Swiss Digital Pathology Consortium (SDiPath) has initiated a Delphi process to generate best-practice recommendations for various phases of the process of digitization in pathology for the local Swiss environment, encompassing the following four topics: i) scanners, quality assurance, and validation of scans; ii) integration of scanners and systems into the pathology laboratory information system; iii) the digital workflow; and iv) digital image analysis (DIA)/artificial intelligence (AI). The current article focuses on the DIA-/AI-related recommendations generated and agreed upon by the working group and further verified by the Delphi process among the members of SDiPath. Importantly, they include the view and the currently perceived needs of practicing pathologists from multiple academic and cantonal hospitals as well as private practices.
引用
收藏
页码:222 / 224
页数:3
相关论文
共 50 条
  • [31] Reimagining T Staging Through Artificial Intelligence and Machine Learning Image Processing Approaches in Digital Pathology
    Bera, Kaustav
    Katz, Ian
    Madabhushi, Anant
    JCO CLINICAL CANCER INFORMATICS, 2020, 4 : 1039 - 1050
  • [32] Banff Digital Pathology Working Group: Image Bank, Artificial Intelligence Algorithm, and Challenge Trial Developments
    Farris, Alton B.
    Alexander, Mariam P.
    Balis, Ulysses G. J.
    Barisoni, Laura
    Boor, Peter
    Buelow, Roman D.
    Cornell, Lynn D.
    Demetris, Anthony J.
    Farkash, Evan
    Hermsen, Meyke
    Hogan, Julien
    Kain, Renate
    Kers, Jesper
    Kong, Jun
    Levenson, Richard M.
    Loupy, Alexandre
    Naesens, Maarten
    Sarder, Pinaki
    Tomaszewski, John E.
    van der Laak, Jeroen
    van Midden, Dominique
    Yagi, Yukako
    Solez, Kim
    TRANSPLANT INTERNATIONAL, 2023, 36
  • [33] Impact of image analysis and artificial intelligence in thyroid pathology, with particular reference to cytological aspects
    Girolami, Ilaria
    Marletta, Stefano
    Pantanowitz, Liron
    Torresani, Evelin
    Ghimenton, Claudio
    Barbareschi, Mattia
    Scarpa, Aldo
    Brunelli, Matteo
    Barresi, Valeria
    Trimboli, Pierpaolo
    Eccher, Albino
    CYTOPATHOLOGY, 2020, 31 (05) : 432 - 444
  • [34] Current Trends of Artificial Intelligence for Colorectal Cancer Pathology Image Analysis: A Systematic Review
    Thakur, Nishant
    Yoon, Hongjun
    Chong, Yosep
    CANCERS, 2020, 12 (07) : 1 - 19
  • [35] The ethical challenges of artificial intelligence-driven digital pathology
    McKay, Francis
    Williams, Bethany J.
    Prestwich, Graham
    Bansal, Daljeet
    Hallowell, Nina
    Treanor, Darren
    JOURNAL OF PATHOLOGY CLINICAL RESEARCH, 2022, 8 (03): : 209 - 216
  • [36] Artificial intelligence and digital pathology as drivers of precision oncology (2023)
    Tolkach, Yuri
    Klein, Sebastian
    Tsvetkov, Tsvetan
    Buettner, Reinhard
    ONKOLOGIE, 2023,
  • [37] Artificial intelligence and digital pathology: clinical promise and deployment considerations
    Zarella, Mark D.
    Mcclintock, David S.
    Batra, Harsh
    Gullapalli, Rama R.
    Valante, Michael
    Tan, Vivian O.
    Dayal, Shubham
    Oh, Kei Shing
    Lara, Haydee
    Garcia, Chris A.
    Abels, Esther
    JOURNAL OF MEDICAL IMAGING, 2023, 10 (05)
  • [38] Integrating telepathology and digital pathology with artificial intelligence: An inevitable future
    Battazza, Alexandre
    Brasileiro, Felipe Cesar da Silva
    Tasaka, Ana Cristina
    Bulla, Camilo
    Ximenes, Pedro Pol
    Hosomi, Juliana Emi
    da Silva, Patricia Fernanda
    da Silva, Larissa Freire
    de Moura, Fernanda Barthelson Carvalho
    Rocha, Noeme Sousa
    VETERINARY WORLD, 2024, 17 (08) : 1667 - 1671
  • [39] Digital pathology and artificial intelligence as the next chapter in diagnostic hematopathology
    Lin, Elisa
    Fuda, Franklin
    Luu, Hung S.
    Cox, Andrew M.
    Fang, Fengqi
    Feng, Junlin
    Chen, Mingyi
    SEMINARS IN DIAGNOSTIC PATHOLOGY, 2023, 40 (02) : 88 - 94
  • [40] Digital pathology and artificial intelligence in translational medicine and clinical practice
    Baxi, Vipul
    Edwards, Robin
    Montalto, Michael
    Saha, Saurabh
    MODERN PATHOLOGY, 2022, 35 (01) : 23 - 32