RUW-Net: A Dual Codec Network for Road Extraction From Remote Sensing Images

被引:3
|
作者
Yang, Jingyu [1 ]
Gu, Zongliang [1 ]
Wu, Ting [1 ]
Ahmed, Yousef Ameen Esmail [1 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Elect & Informat Engn, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiscale feature; remote sensing (RS) image; road extraction; semantic segmentation;
D O I
10.1109/JSTARS.2023.3339241
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Road information plays an increasingly important role in applications, such as map updating, urban planning, and intelligent supervision. However, roads in remote sensing images may be shaded by trees and buildings or interfered with by farmland. These intrinsic image features can cause road extraction results to suffer from breakage and misidentification problems. To address these problems, this article improves on D-LinkNet and proposes a dual codec structure network, namely RUW-Net. Specifically, we use ReSidual U-blocks instead of ordinary residual blocks to extract more global contextual information during the encoding stage. Moreover, we propose a decoder-encoder combination (DEC) module to build a dual codec structure. The DEC module links the decoder of the first U-block and the encoder of the following U-block to narrow the semantic gap in the encoding and decoding process. The RUW-Net model can extract more multiscale contextual features and effectively use them to enhance the semantic information of road entities. Therefore, the RUW-Net model can obtain more accurate extraction results. We conducted a series of experiments on public datasets, such as DeepGlobe, including comparative, robustness, and ablation experiments. The results show that the proposed model alleviates the road extraction breakage and misidentification problems. Compared with other representative methods, the RUW-Net performs better in terms of completeness and accuracy of road extraction results; overall, its extraction results are also the best. The RUW-Net model provides a new idea for road extraction from remote sensing images.
引用
收藏
页码:1550 / 1564
页数:15
相关论文
共 50 条
  • [41] A Lightweight Network for Building Extraction From Remote Sensing Images
    Huang, Huaigang
    Chen, Yiping
    Wang, Ruisheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [42] MSPNet: Multi-Scale Strip Pooling Network for Road Extraction from Remote Sensing Images
    Qu, Shenming
    Zhou, Huafei
    Zhang, Bo
    Liang, Shengbin
    APPLIED SCIENCES-BASEL, 2022, 12 (08):
  • [43] Transferable Contextual Network for Rural Road Extraction from UAV-Based Remote Sensing Images
    Wang, Jian
    Wang, Renlong
    Liu, Yahui
    Zhang, Fei
    Cheng, Ting
    SENSORS, 2025, 25 (05)
  • [44] DECISION-LEVEL FUSION FOR ROAD NETWORK EXTRACTION FROM SAR AND OPTICAL REMOTE SENSING IMAGES
    Xiao, Fanghong
    Tong, Ling
    Wen, Jiang
    Wang, Yuchuan
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7427 - 7430
  • [45] Road Extraction Model of High-resolution Remote Sensing Images based on Dual-attention Residual Network
    Liu, Yang
    Kang, Jian
    Guan, Haiyan
    Wang, Hanyun
    Journal of Geo-Information Science, 2023, 25 (02): : 396 - 408
  • [46] RoadFormer: Pyramidal deformable vision transformers for road network extraction with remote sensing images
    Jiang, Xiaoling
    Li, Yinyin
    Jiang, Tao
    Xie, Junhao
    Wu, Yilong
    Cai, Qianfeng
    Jiang, Jinhui
    Xu, Jiaming
    Zhang, Hui
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 113
  • [47] Convolution and Transformer based hybrid neural network for Road Extraction in Remote Sensing Images
    Liu, Shufan
    Wang, Yang
    Wang, Haoqi
    Xiong, Youqiang
    Liu, Yinfeng
    Xie, Chenxi
    2024 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, ICMA 2024, 2024, : 471 - 476
  • [48] A critical analysis of road network extraction using remote sensing images with deep learning
    Sharma, Palvi
    Kumar, Rakesh
    Gupta, Meenu
    Nayyar, Anand
    SPATIAL INFORMATION RESEARCH, 2024, 32 (04) : 485 - 495
  • [49] Road Network Extraction Using Multi-path Cascade Convolution Neural Network from Remote Sensing Images
    Patil, Dhanashri
    Jadhav, Sangeeta
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2024, 52 (03) : 525 - 541
  • [50] Road Network Extraction Using Multi-path Cascade Convolution Neural Network from Remote Sensing Images
    Dhanashri Patil
    Sangeeta Jadhav
    Journal of the Indian Society of Remote Sensing, 2024, 52 : 525 - 541