On Some New Maclaurin's Type Inequalities for Convex Functions in q-Calculus

被引:6
|
作者
Sitthiwirattham, Thanin [1 ,2 ]
Ali, Muhammad Aamir [3 ]
Budak, Huseyin [4 ]
机构
[1] Suan Dusit Univ, Fac Sci & Technol, Math Dept, Bangkok 10300, Thailand
[2] King Mongkuts Univ Technol North Bangkok, Res Grp Fract Calculus Theory & Applicat, Sci & Technol Res Inst, Bangkok 10800, Thailand
[3] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[4] Duzce Univ, Fac Sci & Arts, Dept Math, TR-81620 Duzce, Turkiye
基金
中国国家自然科学基金;
关键词
Maclaurin's inequalities; Hermite-Hadamard inequalities; convex functions; q-calculus; INTEGRAL-INEQUALITIES; MIDPOINT;
D O I
10.3390/fractalfract7080572
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work establishes some new inequalities to find error bounds for Maclaurin's formulas in the framework of q-calculus. For this, we first prove an integral identity involving q-integral and q-derivative. Then, we use this new identity to prove some q-integral inequalities for q-differentiable convex functions. The inequalities proved here are very important in the literature because, with their help, we can find error bounds for Maclaurin's formula in both q and classical calculus.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] SOME PROPERTIES OF ANALYTIC FUNCTIONS ASSOCIATED WITH FRACTIONAL q-CALCULUS OPERATORS
    Srivastava, H. M.
    Aouf, M. K.
    Mostafa, A. O.
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (02) : 1245 - 1260
  • [32] Some properties from q-Calculus
    Sofonea, Daniel Florin
    MMACTEE' 08: PROCEEDINGS OF THE 10TH WSEAS INTERNATIONAL CONFERENCE MATHERMATICAL METHODS AND COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING: COMPUTATIONAL METHODS AND INTELLIGENT SYSTEMS, 2008, : 91 - 95
  • [33] Some new inequalities of Simpson type for strongly s-convex functions
    Hua, Ju
    Xi, Bo-Yan
    Qi, Feng
    AFRIKA MATEMATIKA, 2015, 26 (5-6) : 741 - 752
  • [34] Some New Generalized Fractional Newton's Type Inequalities for Convex Functions
    Soontharanon, Jarunee
    Ali, Muhammad Aamir
    Budak, Hueseyin
    Koesem, Pinar
    Nonlaopon, Kamsing
    Sitthiwirattham, Thanin
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [35] Some new inequalities of Jensen's type for operator s-convex functions
    Shafiei, Marziyeh
    Ghazanfari, Amir Ghasem
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2018, 45 (01): : 50 - 65
  • [36] BILINEAR WEIGHTED HARDY-TYPE INEQUALITIES IN DISCRETE AND q-CALCULUS FRAMEWORKS
    Jain, Pankaj
    Kanjilal, Saikat
    Shambilova, Guldarya E.
    Stepanov, Vladimir D.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (04): : 1279 - 1310
  • [37] ON SOME NEW INEQUALITIES FOR s- CONVEX FUNCTIONS
    Kiris, Mehmet Eyup
    Kara, Hasan
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 101 - 113
  • [38] New integral inequalities involving m-convex functions in (p, q)-calculus
    Kashuri, Artion
    Raees, Muhammad
    Anwar, Matloob
    TBILISI MATHEMATICAL JOURNAL, 2021, 14 (03) : 19 - 40
  • [39] On Hermite-Hadamard Type Inequalities for Coordinated Convex Functions via (p,q)-Calculus
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    MATHEMATICS, 2021, 9 (07)
  • [40] Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus
    Luangboon, Waewta
    Nonlaopon, Kamsing
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    MATHEMATICS, 2021, 9 (12)