Tailoring the electrochemical reduction kinetics of dual-phase BaCe0.5Fe0.5O3-δ cathode via incorporating Mo for IT-SOFCs

被引:13
|
作者
Yang, Quan [1 ,2 ]
Lu, Jing [1 ]
Li, Chanyu [1 ]
Tian, Dong [1 ]
Ding, Yanzhi [1 ]
Lu, Xiaoyong [1 ]
Gao, Xing [1 ]
Chen, Yonghong [1 ]
Lin, Bin [1 ,2 ]
机构
[1] Huainan Normal Univ, Huainan Engn Res Ctr Fuel Cells, Anhui Key Lab Low Temp Cofired Mat, Huainan 232001, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
关键词
Solid oxide fuel cell; BCF; Dual-phase; ORR; COBALT-FREE PEROVSKITE; OXIDE; PERFORMANCE; ELECTRODE;
D O I
10.1016/j.jeurceramsoc.2023.06.006
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The BaCe0.5Fe0.5O3-delta (BCF) cathode consists of the ion-electron mixed conducting phase BaCe0.15Fe0.85O3-delta(BCF1585) and the proton-conducting phase BaCe0.85Fe0.15O3-delta (BCF8515). In this paper, the electrochemical performance is improved by incorporating the high valence element Mo into the BCF and applied to intermediate-temperature solid oxide fuel cells (IT-SOFCs). High-temperature X-ray diffraction (HT-XRD) and O-2-temperature programmed desorption (O-2-TPD) results show that Mo doping enhances the structural stability of BCF. The X-ray photoelectron spectroscopy (XPS) results suggest that the introduction of Mo increases the amount of adsorbed oxygen and thus the oxygen reduction reaction (ORR) catalytic activity. Compared to BCF, the polarization impedance of BaCe0.5Fe0.45Mo0.05O3-delta (BCFM) at 800.C is 0.154 Omega center dot cm(2), a reduction of 22 %. Meanwhile, the BCFM output power at 800 degrees C is 778.01 mW center dot cm(-2), an improvement of 32.17 %, and maintains a stable current density after 250 h at 0.7 V. The results demonstrate that Mo doping is an effective strategy to enhance the electrochemical performance of BCF.
引用
收藏
页码:6180 / 6188
页数:9
相关论文
共 45 条
  • [41] Potentiality of cobalt-free perovskite Ba0.5Sr0.5Fe0.9Mo0.1O3-δ as a single-phase cathode for intermediate-to-low-temperature solid oxide fuel cells (vol 38, pg 14323, 2013)
    Ling, Yihan
    Zhang, Xiaozhen
    Wang, Zhenbin
    Wang, Song Lin
    Zhao, Ling
    Liu, Xingqin
    Lin, Bin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (22) : 11825 - 11826
  • [42] In situ exsolved FeNi3 nanoparticles on nickel doped Sr2Fe1.5Mo0.5O6- perovskite for efficient electrochemical CO2 reduction reaction
    Lv, Houfu
    Lin, Le
    Zhang, Xiaomin
    Gao, Dunfeng
    Song, Yuefeng
    Zhou, Yingjie
    Liu, Qingxue
    Wang, Guoxiong
    Bao, Xinhe
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (19) : 11967 - 11975
  • [43] Decoration by dual-phase Li2ZrO3 islands with core-shell structures enhances the electrochemical performance of high-voltage LiNi0.5Mn1.5O4
    Zhao, R.
    Li, L.
    Li, Y. P.
    Xu, T. H.
    Pan, D.
    Yu, C. Y.
    Zhao, H. L.
    Bai, Y.
    APPLIED PHYSICS LETTERS, 2020, 116 (02)
  • [44] A comprehensive comparative study of CO2-resistance and oxygen permeability of 60 wt % Ce0.8M0.2O2-δ (M = La, Pr, Nd, Sm, Gd)-40 wt % La0.5Sr0.5Fe0.8Cu0.2O3-δ dual-phase membranes
    Chen, Guoxing
    Zhao, Zhijun
    Widenmeyer, Marc
    Froemling, Till
    Hellmann, Tim
    Yan, Ruijuan
    Qu, Fangmu
    Homm, Gert
    Hofmann, Jan P.
    Feldhoff, Armin
    Weidenkaff, Anke
    JOURNAL OF MEMBRANE SCIENCE, 2021, 639
  • [45] A Nano-Structured SOFC Composite Cathode Prepared via Infiltration of La0.5Ba0.25Sr0.25Co0.8Fe0.2O3-δ into La0.9Sr0.1Ga0.8Mg0.2O3-δ for Extended Triple-Phase Boundary Area
    Lee, Seungtae
    Kim, Seona
    Choi, Sihyuk
    Shin, Jeeyoung
    Kim, Guntae
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (12) : F805 - F809