ROBUSTNESS OF ITERATED FUNCTION SYSTEMS OF LIPSCHITZ MAPS

被引:0
|
作者
Herve, Loic [1 ]
Ledoux, James [1 ]
机构
[1] Univ Rennes, INSA Rennes, CNRS, IRMAR UMR 6625, Rennes, France
关键词
Markov chain; geometric ergodicity; perturbation; non-linear stochastic recursion; autoregressive process; MAXIMUM-LIKELIHOOD ESTIMATOR; GEOMETRIC-CONVERGENCE RATES; MARKOV-CHAINS; PERTURBATION-THEORY; ERGODICITY; STABILITY; THEOREM; KERNELS;
D O I
10.1017/jpr.2022.107
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {X-n}(n is an element of N) be an X-valued iterated function system (IFS) of Lipschitz maps defined as X-0 is an element of X and for n >= 1, X-n := F(Xn-1, (SIC)(n)), where {(SIC)(n)}(n >= 1 )are independent and identically distributed random variables with common probability distribution p, F(middot, middot) is Lipschitz continuous in the first variable, and X0 is independent of {(SIC)(n)}(n >= 1). Under parametric perturbation of both F and p, we are interested in the robustness of the V geometrical ergodicity property of {X-n}(n is an element of N), of its invariant probability measure, and finally of the probability distribution of X-n. Specifically, we propose a pattern of assumptions for studying such robustness properties for an IFS. This pattern is implemented for the autoregressive processes with autoregressive conditional heteroscedastic errors, and for IFS under roundoff error or under thresholding/truncation. Moreover, we provide a general set of assumptions covering the classical Feller-type hypotheses for an IFS to be a V-geometrical ergodic process. An accurate bound for the rate of convergence is also provided.
引用
收藏
页码:921 / 944
页数:24
相关论文
共 50 条
  • [21] Iterated function systems and dynamical systems
    Gora, P
    Boyarsky, A
    CHAOS, 1995, 5 (04) : 634 - 639
  • [22] Representation of Lipschitz Maps and Metric Coordinate Systems
    Arnau, Roger
    Calabuig, Jose M.
    Sanchez Perez, Enrique A.
    MATHEMATICS, 2022, 10 (20)
  • [23] On chaos for iterated function systems
    Bahabadi, Alireza Zamani
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (04)
  • [24] Ends of iterated function systems
    Gregory R. Conner
    Wolfram Hojka
    Mathematische Zeitschrift, 2014, 277 : 1073 - 1083
  • [25] Chaotic iterated function systems
    Sarizadeh, Aliasghar
    ARCHIV DER MATHEMATIK, 2022, 119 (05) : 531 - 538
  • [26] Attractors for iterated function systems
    D'Aniello, Emma
    Steele, T. H.
    JOURNAL OF FRACTAL GEOMETRY, 2016, 3 (02) : 95 - 117
  • [27] Chaotic iterated function systems
    Aliasghar Sarizadeh
    Archiv der Mathematik, 2022, 119 : 531 - 538
  • [28] Parabolic iterated function systems
    Mauldin, RD
    Urbanski, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 1423 - 1447
  • [29] Chaos in Iterated Function Systems
    Mohtashamipour, Maliheh
    Bahabadi, Alireza Zamani
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (12):
  • [30] RECURRENT ITERATED FUNCTION SYSTEMS
    Mihail, Alexandru
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 53 (01): : 43 - 53