MOF-derived Co3O4 hierarchical porous structure for enhanced acetone sensing performance with high sensitivity and low detection limit

被引:31
|
作者
Guo, Rong [1 ]
Hou, Xinghui [1 ]
Shi, Caixin [1 ]
Zhang, Wenpu [1 ]
Zhou, Ying [1 ]
机构
[1] Zhengzhou Univ, Sch Mat Sci & Engn, 100 Sci Rd, Zhengzhou 450001, Peoples R China
基金
中国博士后科学基金;
关键词
MOF; Solvothermal method; Acetone sensing; Sensing mechanism; SELECTIVE DETECTION; ASSISTED SYNTHESIS; MESOPOROUS CO3O4; GAS SENSOR; NANOPARTICLES; FRAMEWORKS; NANOSHEETS; CATALYST;
D O I
10.1016/j.snb.2022.132973
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Metal organic frameworks (MOFs) with unique interior structure play a significant role in the field of gas-sensing. In this research, Co3O4-x hierarchical porous structure is successfully prepared by the solvothermal method and subsequent heat treatment using MOF as a sacrificial template. The effect of cobalt sources with different pro-portions of cobalt nitrate and cobalt chloride on the morphology, structure and gas-sensing of as-prepared Co3O4- x (x = 0, 1, 2, 3) samples is characterized and investigated in details by various techniques of XRD, Raman, SEM, TEM, BET and XPS. The findings demonstrate that the typical Co3O4-2 sensor exhibits a significantly higher response (27.6) than Co3O4-0 (6.1) to 50 ppm acetone at 140 degrees C. Furthermore, Co3O4-2 sensor exhibits fairly low detection limit of 0.1 ppm, superior selectivity, repeatability, and long-term stability. The optimized acetone -sensing capability of the as-obtained Co3O4-x samples may be ascribed to the hierarchical porous structure composed of the adhered nanoparticles due to the slow dissolution of CoCl2.6H2O, which is beneficial to increasing electron transport channels, thus improving gas sensitivity. The work provides a new idea for the preparation of respiratory monitoring materials for diabetic patients.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Enhanced ethanol sensors based on MOF-derived ZnO/Co3O4 bimetallic oxides with high selectivity and improved stability
    Liu, Chaoqiang
    Li, Dengwang
    Tang, Wei
    VACUUM, 2023, 214
  • [42] Synergetic enhancement effect of MOF-derived porous ZnO/ Co3O4 cage Z-scheme heterostructure for high-performance photodegradation
    Wang, Zerong
    Yin, Huimin
    Guo, Yingli
    Gao, Yongtao
    Liu, Junhui
    Han, Junhe
    Huang, Mingju
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1005
  • [43] Synergetic enhancement effect of MOF-derived porous ZnO/ Co3O4 cage Z-scheme heterostructure for high-performance photodegradation
    Wang, Zerong
    Yin, Huimin
    Guo, Yingli
    Gao, Yongtao
    Liu, Junhui
    Han, Junhe
    Huang, Mingju
    Journal of Alloys and Compounds, 2024, 1005
  • [44] Interface Defects and Carrier Regulation in MOF-Derived Co3O4/In2O3 Composite Materials for Enhanced Selective Detection of HCHO
    Chen, Yi
    Han, Dongmei
    Wang, Zhihua
    Gu, Fubo
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (18) : 23553 - 23566
  • [45] Chemiresistive detection of xylene vapor using MOF-derived porous Co3O4 microrods activated by Mo6+ cations
    Yang, Wei
    Fang, Baijun
    Zhang, Yuanhui
    Ma, Guoming
    Meng, Hu
    Liu, Shantang
    SENSORS AND ACTUATORS B-CHEMICAL, 2025, 422
  • [46] Metal-Organic Frameworks-Derived Hierarchical Co3O4 Structures as Efficient Sensing Materials for Acetone Detection
    Zhang, Rui
    Zhou, Tingting
    Wang, Lili
    Zhang, Tong
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (11) : 9765 - 9773
  • [47] Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas
    Deng, Jianan
    Zhang, Rui
    Wang, Lili
    Lou, Zheng
    Zhang, Tong
    SENSORS AND ACTUATORS B-CHEMICAL, 2015, 209 : 449 - 455
  • [48] MOF-Derived Co3O4/C Microspheres As High-Performance Anode Materials for Lithium-Ion Batteries
    Ruohan Guan
    Guixia Dong
    Zongfeng Li
    Shuangjuan Yang
    Russian Journal of Physical Chemistry A, 2022, 96 : S175 - S182
  • [49] MOF-Derived Co3O4/C Microspheres As High-Performance Anode Materials for Lithium-Ion Batteries
    Guan, Ruohan
    Dong, Guixia
    Li, Zongfeng
    Yang, Shuangjuan
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2022, 96 (SUPPL 1) : S175 - S182
  • [50] MOF Derived High Surface Area Enabled Porous Co3O4 Nanoparticles for Supercapacitors
    Saraf, Mohit
    Rajak, Richa
    Mobin, Shaikh M.
    CHEMISTRYSELECT, 2019, 4 (27): : 8142 - 8149