Ground states for Chern-Simons-Schrodinger system with nonperiodic potential

被引:1
|
作者
Kang, Jin-Cai [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Chern-Simons-Schrodinger system; ground state solution; splitting lemma; variational method; NONTRIVIAL SOLUTIONS; STANDING WAVES; EXISTENCE; EQUATION;
D O I
10.1007/s11784-022-01043-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main aim in the present paper is to investigate the generalized Chern-Simons-Schrodinger system in H-1(R-2){ -delta u + V (x)u + A(0)u + sigma(2 )(j=1)A(j)(2)u = |u|(p-2)u,& part;(1)A(2 )- & part;(2)A(1 )= -1/2u(2), & part;(1)A(1 )+ & part;(2)A(2) = 0,delta A(0) = & part;(1)(A(2)|u|(2)) - & part;(2)(A(1)|u|(2)),where p is an element of (6, +infinity). Here, V is an element of C(R-2, R), V(x) = V-1(x) for x(1) > 0 and V(x) = V-2(x) for x(1) < 0, where V-1, V-2 are periodic in each coordinate direction. By giving a splitting lemma, we obtain the existence of ground state solutions for the above problem.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Adiabatic Limit and the Slow Motion of Vortices in a Chern-Simons-Schrodinger System
    Demoulini, Sophia
    Stuart, David
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 290 (02) : 597 - 632
  • [22] Global wellposedness of the equivariant Chern-Simons-Schrodinger equation
    Liu, Baoping
    Smith, Paul
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (03) : 751 - 794
  • [23] On threshold solutions of the equivariant Chern-Simons-Schrodinger equation
    Li, Zexing
    Liu, Baoping
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2022, 39 (02): : 371 - 417
  • [24] On the Chern-Simons-Schrodinger Equation with Critical Exponential Growth
    Chen, Si Tong
    Tang, Xian Hua
    Yuan, Shuai
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (12) : 1875 - 1895
  • [25] THE EXISTENCE OF NONTRIVIAL SOLUTIONS TO CHERN-SIMONS-SCHRODINGER SYSTEMS
    Wan, Youyan
    Tan, Jinggang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (05) : 2765 - 2786
  • [26] Well-posedness for the Chern-Simons-Schrodinger equations
    Fan, Jishan
    Ozawa, Tohru
    AIMS MATHEMATICS, 2022, 7 (09): : 17349 - 17356
  • [27] Infinitely Many High Energy Solutions for the Generalized Chern-Simons-Schrodinger System
    Su, Hua
    Wang, Yongqing
    Xu, Jiafa
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [28] Normalized solutions to the Chern-Simons-Schrodinger system under the nonlinear combined effect
    Yao, Shuai
    Chen, Haibo
    Sun, Juntao
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (09) : 2057 - 2080
  • [29] The equivalence of the Chern-Simons-Schrodinger equations and its self-dual system
    Huh, Hyungjin
    Seok, Jinmyoung
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (02)
  • [30] Two Normalized Solutions for the Chern-Simons-Schrodinger System with Exponential Critical Growth
    Yao, Shuai
    Chen, Haibo
    Sun, Juntao
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (03)