Semi-parametric modelling of inefficiencies in stochastic frontier analysis

被引:3
|
作者
Forchini, Giovanni [1 ]
Theler, Raoul [1 ]
机构
[1] Umea Univ, USBE, S-90187 Umea, Sweden
关键词
Stochastic frontier; Partially linear single-index model; Semi-parametric; Penalized splines; Energy economics; SINGLE-INDEX; MAXIMUM-LIKELIHOOD; DETERMINANTS;
D O I
10.1007/s11123-022-00656-x
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose a novel penalized splines method to estimate a stochastic frontier model in which the frontier is linear and the inefficiency has a single index structure with unknown link function and a linear index. The approach is more flexible than the traditional methodology requiring a parametric link function and, at the same time, it does not incur the curse of dimensionality as a fully non-parametric approach. The procedure can be easily implemented using existing software. We give conditions for the model to be identified and provide some asymptotic results. We also use Monte Carlo simulations to show that the approach works well in finite samples in many situations when compared to the well specified maximum likelihood estimator. An application to the residential energy demand of US states is considered. In this case, the penalized splines approach estimates inefficiency functions that deviate substantially from those resulting from parametric maximum likelihood methods previously implemented.
引用
收藏
页码:135 / 152
页数:18
相关论文
共 50 条
  • [31] Nonlinearities in productivity growth: A semi-parametric panel analysis
    Azomahou, Theophile T.
    Diene, Bity
    Diene, Mbaye
    STRUCTURAL CHANGE AND ECONOMIC DYNAMICS, 2013, 24 : 45 - 75
  • [32] Semi-parametric time-to-event modelling of lengths of hospital stays
    Li, Yang
    Liu, Hao
    Wang, Xiaoshen
    Tu, Wanzhu
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2022, 71 (05) : 1623 - 1647
  • [33] Semi-parametric Image Synthesis
    Qi, Xiaojuan
    Chen, Qifeng
    Jia, Jiaya
    Koltun, Vladlen
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8808 - 8816
  • [34] Semi-parametric resampling with extremes
    Opitz, Thomas
    Allard, Denis
    Mariethoz, Gregoire
    SPATIAL STATISTICS, 2021, 42
  • [35] Semi-parametric cluster detection
    Kedem B.
    Wen S.
    Journal of Statistical Theory and Practice, 2007, 1 (1) : 49 - 72
  • [36] Testing linearity in semi-parametric functional data analysis
    Aneiros-Perez, German
    Vieu, Philippe
    COMPUTATIONAL STATISTICS, 2013, 28 (02) : 413 - 434
  • [37] A semi-parametric analysis of the cash flow sensitivity of cash
    Kadzima, Marvelous
    Machokoto, Michael
    FINANCE RESEARCH LETTERS, 2023, 56
  • [38] Bayesian analysis of generalized elliptical semi-parametric models
    Rondon, Luz Marina
    Bolfarine, Heleno
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (08) : 1508 - 1524
  • [39] Semi-parametric estimation of shifts
    Gamboa, Fabrice
    Loubes, Jean-Michel
    Maza, Elie
    ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 : 616 - 640
  • [40] Semi-parametric ROC regression analysis with placement values
    Cai, TX
    BIOSTATISTICS, 2004, 5 (01) : 45 - 60