Achieving high energy storage density in BaTiO3-(Bi0.5Li0.5)(Ti0.5Sn0.5)O3 lead-free relaxor ferroelectric ceramics

被引:23
|
作者
Zeng, Dafu [1 ]
Dong, Qinpeng [1 ]
Nong, Peng [1 ]
Pan, Yue [1 ]
Xu, Ming Zhao [1 ]
Wang, Xiang [1 ]
Wang, Jiaming [1 ]
Chen, Xiuli [1 ]
Zhou, Huanfu [1 ]
机构
[1] Guilin Univ Technol, Sch Mat Sci & Engn, Key Lab Nonferrous Mat & New Proc Technol, Minist Educ, Guilin 541004, Peoples R China
关键词
Energy storage; BaTiO3-based; Relaxor characteristic; PERFORMANCE; STABILITY;
D O I
10.1016/j.jallcom.2022.168455
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
New environmental protection energy storage devices have been widely studied in recent years. BaTiO3- based ceramics are considered excellent materials for achieving high energy storage due to their exceptional dielectric and ferroelectric properties. In this study, a series of(1-x)BaTiO3-x(Bi0.5Li0.5)(Ti0.5Sn0.5)O3 (xBLST, x = 0.1, 0.15, 0.2, and 0.25) ceramics were successfully synthesized by the conventional solid-phase method. The 0.2BLST ceramics exhibited a high recoverable energy storage density (Wrec) of 3.83 J/cm3 and high energy storage efficiency (eta) of 88 % under the breakdown strength (Eb) of 525 kV/cm. Moreover, the Wrec of 0.2BLST ceramics had outstanding stability over 1-120 Hz and between 20 and 180 degrees C. Finally, the 0.2BLST ceramics displayed excellent charge-discharge performance with a discharge power of up to 86 MW/cm3, a high discharge density of 0.68 J/cm3, and an extremely fast discharge time (t0.9 similar to 71 ns). These properties establish that 0.2BLST ceramic is a promising lead-free energy material.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Dielectric and impedance spectroscopy of (Bi0.5Li0.5)(Fe0.5Nb0.5)O3 multiferroics
    Dash, Swagatika
    Padhee, R.
    Das, Piyush R.
    Choudhary, R. N. P.
    PHASE TRANSITIONS, 2014, 87 (03) : 223 - 235
  • [32] Excellent energy storage density and efficiency in lead-free Sm-doped BaTiO3-Bi(Mg0.5Ti0.5)O3ceramics
    Liu, Zhi-Gang
    Tang, Zhen-Hua
    Hu, Song-Cheng
    Yao, Di-Jie
    Sun, Fei
    Chen, De-Yang
    Guo, Xiao-Bin
    Liu, Qiu-Xiang
    Jiang, Yan-Ping
    Tang, Xin-Gui
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (38) : 13405 - 13414
  • [33] Enhanced energy storage properties of KNbO3 modified (Bi0.5Na0.5)TiO3-BaTiO3 based lead-free relaxor ferroelectric ceramics
    Yang, Fan
    Li, Qiang
    Hou, Dingwei
    Jia, Yuxin
    Wang, Weijia
    Fan, Huiqing
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (43) : 20965 - 20971
  • [34] Piezoelectric and dielectric properties of Bi0.5Na0.5TiO3-Bi0.5Li0.5TiO3 lead-free ceramics
    Lin, Dunmin
    Xu, Chenggang
    Zheng, Qiaoji
    Wei, Yujun
    Gao, Daojiang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2009, 20 (05) : 393 - 397
  • [35] Composition design and electrical properties in BiFeO3-BaTiO3-Bi(Zn0.5Ti0.5)O3 lead-free ceramics
    Liu, Zhuang
    Zheng, Ting
    Zhao, Chunlin
    Wu, Jiagang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (17) : 13076 - 13083
  • [36] Enhanced optical and energy storage properties of K0.5Na0.5NbO3 lead-free ceramics by doping Bi(Sr0.5Zr0.5)O3
    Dong, Lechen
    Dai, Zhonghua
    Hou, Jie
    Liu, Chenxi
    Dai, Ruijian
    Liu, Yuxing
    Liu, Weiguo
    Gu, Shuitao
    JOURNAL OF ENERGY STORAGE, 2023, 74
  • [37] Significantly improved energy storage characteristics of Bi0.5Na0.5TiO3-BaTiO3-based lead-free relaxation ferroelectric ceramics
    Sun, Minghui
    Wang, Li
    Jia, Ruiling
    Fu, Yang
    Yao, Shengnan
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2025, 36 (06)
  • [38] Effect of Bi(Mg0.5Ti0.5)O3 addition on the dielectric and electrocaloric properties of relaxor (Na0.5Bi0.5)TiO3-BaTiO3 ceramics
    Fathabad, Sobhan M.
    Shvartsman, Vladimir V.
    Lewin, Daniil
    Kaleva, Galina M.
    Politova, Ekaterina D.
    Lupascu, Doru C.
    CERAMICS INTERNATIONAL, 2024, 50 (19) : 35769 - 35781
  • [39] Microstructure, ferroelectric, piezoelectric and ferromagnetic properties of BiFeO3–BaTiO3–Bi(Zn0.5Ti0.5)O3 lead-free multiferroic ceramics
    Qiaoji Zheng
    Yongquan Guo
    Fengying Lei
    Xiaochun Wu
    Dunmin Lin
    Journal of Materials Science: Materials in Electronics, 2014, 25 : 2638 - 2648
  • [40] High energy storage efficiency and excellent recoverable energy storage density realized in 0.65Bi0.5Na0.5TiO3-0.35BaTiO3-SrZr0.5Ti0.5O3 ceramics
    Wang, Minquan
    Lin, Ying
    Chen, Mi
    Zhang, Miao
    Yuan, Qibin
    Yang, Haibo
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (19) : 6407 - 6416