Enhancing diagnostic precision in liver lesion analysis using a deep learning-based system: opportunities and challenges

被引:0
|
作者
Lee, Jeong Min [1 ,2 ,3 ]
Bae, Jae Seok [1 ]
机构
[1] Seoul Natl Univ Hosp, Dept Radiol, Seoul, South Korea
[2] Seoul Natl Univ, Coll Med, Dept Radiol, Seoul, South Korea
[3] Seoul Natl Univ, Inst Radiat Med, Med Res Ctr, Seoul, South Korea
关键词
FUTURE;
D O I
10.1038/s41571-024-00887-x
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
A recent study reported the development and validation of the Liver Artificial Intelligence Diagnosis System (LiAIDS), a fully automated system that integrates deep learning for the diagnosis of liver lesions on the basis of contrast-enhanced CT scans and clinical information. This tool improved diagnostic precision, surpassed the accuracy of junior radiologists (and equalled that of senior radiologists) and streamlined patient triage. These advances underscore the potential of artificial intelligence to enhance hepatology care, although challenges to widespread clinical implementation remain.
引用
收藏
页码:485 / 486
页数:2
相关论文
共 50 条
  • [21] A Hybrid Phishing Detection System Using Deep Learning-based URL and Content Analysis
    Korkmaz, Mehmet
    Kocyigit, Emre
    Sahingoz, Ozgur Koray
    Diri, Banu
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2022, 28 (05) : 80 - 89
  • [22] Deep Learning-Based Image Analysis of Liver Steatosis in Mouse Models
    Mairinoja, Laura
    Heikela, Hanna
    Blom, Sami
    Kumar, Darshan
    Knuuttila, Anna
    Boyd, Sonja
    Sjoblom, Nelli
    Birkman, Eva-Maria
    Rinne, Petteri
    Ruusuvuori, Pekka
    Strauss, Leena
    Poutanen, Matti
    AMERICAN JOURNAL OF PATHOLOGY, 2023, 193 (08): : 1072 - 1080
  • [23] Dynamic indoor thermal environment using Reinforcement Learning-based controls: Opportunities and challenges
    Chatterjee, Arnab
    Khovalyg, Dolaana
    BUILDING AND ENVIRONMENT, 2023, 244
  • [24] Deep Learning-based Methods for MS Lesion Segmentation : A Review
    Ben Abdelali, Hanene
    Sahnoun, Mouna
    Sakka, Salma
    Damak, Mariem
    Siarry, Patrick
    Kallel, Fathi
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES, SIGNAL AND IMAGE PROCESSING, ATSIP 2024, 2024, : 676 - 682
  • [25] Deep Learning-Based Periapical Lesion Detection on Panoramic Radiographs
    Szabo, Viktor
    Orhan, Kaan
    Dobo-Nagy, Csaba
    Veres, Daniel Sandor
    Manulis, David
    Ezhov, Matvey
    Sanders, Alex
    Szabo, Bence Tamas
    DIAGNOSTICS, 2025, 15 (04)
  • [26] Multimodal deep learning-based diagnostic model for BPPV
    Hang Lu
    Yuxing Mao
    Jinsen Li
    Lin Zhu
    BMC Medical Informatics and Decision Making, 24
  • [27] Multimodal deep learning-based diagnostic model for BPPV
    Lu, Hang
    Mao, Yuxing
    Li, Jinsen
    Zhu, Lin
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [28] Enhancing graphical password authentication system with deep learning-based arabic digit recognition
    Rasheed A.F.
    Zarkoosh M.
    Elia F.R.
    International Journal of Information Technology, 2024, 16 (3) : 1419 - 1427
  • [29] Enhancing Aviation Safety: A Deep Learning-Based Fault Detection System for Jet Engines
    Suliman, Saiful Izwan
    Yusof, Yuslinda Wati Mohamad
    Rahman, Farah Yasmin Abdul
    Izran, Muhamad Haziq Bin Shamsul
    2024 IEEE 14TH SYMPOSIUM ON COMPUTER APPLICATIONS & INDUSTRIAL ELECTRONICS, ISCAIE 2024, 2024, : 560 - 566
  • [30] Towards Private Deep Learning-Based Side-Channel Analysis Using Homomorphic Encryption Opportunities and Limitations
    Schmid, Fabian
    Mukherjee, Shibam
    Picek, Stjepan
    Stoettinger, Marc
    De Santis, Fabrizio
    Rechberger, Christian
    CONSTRUCTIVE SIDE-CHANNEL ANALYSIS AND SECURE DESIGN, COSADE 2024, 2024, 14595 : 133 - 154