Convolutional Neural Network-Based Bidirectional Gated Recurrent Unit-Additive Attention Mechanism Hybrid Deep Neural Networks for Short-Term Traffic Flow Prediction

被引:3
|
作者
Liu, Song [1 ,2 ,3 ,4 ,5 ]
Lin, Wenting [2 ]
Wang, Yue [6 ]
Yu, Dennis Z. [7 ]
Peng, Yong [2 ,5 ]
Ma, Xianting [1 ,2 ]
机构
[1] Chongqing Jiaotong Univ, Inst Key Lab Traff Syst, Chongqing 400074, Peoples R China
[2] Chongqing Jiaotong Univ, Sch Traff & Transportat, Chongqing 400074, Peoples R China
[3] Chongqing Jiaotong Univ, Inst Intelligent Optimizat Comprehens Transportat, Chongqing 400074, Peoples R China
[4] Nanjing Univ Aeronaut & Astronaut, Coll Civil Aviat, Nanjing 210016, Peoples R China
[5] Chongqing Jiaotong Univ, Res Ctr Transportat & Int Supply Chain Management, Chongqing 400074, Peoples R China
[6] Highway Serv Ctr Yongchuan Dist, Chongqing 402160, Peoples R China
[7] Clarkson Univ, David D Reh Sch Business, Potsdam, NY 13699 USA
关键词
sustainable transportation; short-term traffic flow; convolutional neural network; bidirectional gated recurrent unit; additive attention mechanism; combinatorial predictive model; MODEL;
D O I
10.3390/su16051986
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To more accurately predict short-term traffic flow, this study posits a sophisticated integrated prediction model, CNN-BiGRU-AAM, based on the additive attention mechanism of a convolutional bidirectional gated recurrent unit neural network. This model seeks to enhance the precision of traffic flow prediction by integrating both historical and prospective data. Specifically, the model achieves prediction through two steps: encoding and decoding. In the encoding phase, convolutional neural networks are used to extract spatial correlations between weather and traffic flow in the input sequence, while the BiGRU model captures temporal correlations in the time series. In the decoding phase, an additive attention mechanism is introduced to weigh and fuse the encoded features. The experimental results demonstrate that the CNN-BiGRU model, coupled with the additive attention mechanism, is capable of dynamically capturing the temporal patterns of traffic flow, and the introduction of isolation forests can effectively handle data anomalies and missing values, improving prediction accuracy. Compared to benchmark models such as GRU, the CNN-BiGRU-AAM model shows significant improvement on the test set, with a 47.49 reduction in the Root Mean Square Error (RMSE), a 30.72 decrease in the Mean Absolute Error (MAE), and a 5.27% reduction in the Mean Absolute Percentage Error (MAPE). The coefficient of determination (R2) reaches 0.97, indicating the high accuracy of the CNN-BiGRU-AAM model in traffic flow prediction. It provides a good solution for short-term traffic flow with spatio-temporal features, thereby enhancing the efficiency of traffic management and planning and promoting the sustainable development of transportation.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Short-term prediction of traffic flow under incident conditions using graph convolutional recurrent neural network and traffic simulation
    Fukuda, Shota
    Uchida, Hideaki
    Fujii, Hideki
    Yamada, Tomonori
    IET INTELLIGENT TRANSPORT SYSTEMS, 2020, 14 (08) : 936 - 946
  • [32] A Novel Graph Convolutional Gated Recurrent Unit Framework for Network-Based Traffic Prediction
    Hussain, Basharat
    Afzal, Muhammad Khalil
    Anjum, Sheraz
    Rao, Imran
    Kim, Byung-Seo
    IEEE ACCESS, 2023, 11 : 130102 - 130118
  • [33] Short-Term Bus Passenger Flow Prediction Based on Graph Diffusion Convolutional Recurrent Neural Network
    Zhai, Xubin
    Shen, Yu
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [34] Urban Road Traffic Flow Prediction with Attention-Based Convolutional Bidirectional Long Short-Term Memory Networks
    Liu, Zhiquan
    Hu, Yao
    Ding, Xiangying
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (07) : 449 - 458
  • [35] Cellular Traffic Prediction Using Deep Convolutional Neural Network with Attention Mechanism
    Wang, Zihuan
    Wong, Vincent W. S.
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 2339 - 2344
  • [36] Attention-Based Bidirectional Gated Recurrent Unit Neural Networks for Sentiment Analysis
    Yu, Qing
    Zhao, Hui
    Wang, Zuohua
    2019 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND PATTERN RECOGNITION (AIPR 2019), 2019, : 116 - 119
  • [37] A hybrid network based on multi-scale convolutional neural network and bidirectional gated recurrent unit for EEG denoising
    Li, Qiang
    Zhou, Yan
    Ren, Junxiao
    Wu, Qiao
    Zhao, Ji
    NEUROSCIENCE, 2025, 572 : 155 - 170
  • [38] Fusion attention mechanism bidirectional LSTM for short-term traffic flow prediction
    Li, Zhihong
    Xu, Han
    Gao, Xiuli
    Wang, Zinan
    Xu, Wangtu
    JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 28 (04) : 511 - 524
  • [39] Network Traffic Prediction based on Diffusion Convolutional Recurrent Neural Networks
    Andreoletti, Davide
    Troia, Sebastian
    Musumeci, Francesco
    Giordano, Silvia
    Maier, Guido
    Tornatore, Massimo
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM 2019 WKSHPS), 2019, : 246 - 251
  • [40] Mandarin Recognition Based on Self-Attention Mechanism with Deep Convolutional Neural Network (DCNN)-Gated Recurrent Unit (GRU)
    Chen, Xun
    Wang, Chengqi
    Hu, Chao
    Wang, Qin
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (12)