Exploring the amplified role of HCHO in the formation of HMS and O3 during the co-occurring PM2.5 and O3 pollution in a coastal city of southeast China

被引:3
|
作者
Hong, Youwei [1 ,2 ,3 ,4 ,7 ]
Zhang, Keran [1 ,2 ,4 ]
Liao, Dan [6 ]
Chen, Gaojie [1 ,2 ,3 ]
Zhao, Min [9 ]
Lin, Yiling [1 ,2 ,5 ]
Ji, Xiaoting [1 ,2 ,3 ]
Xu, Ke [1 ,2 ,7 ]
Wu, Yu [1 ,2 ,5 ]
Yu, Ruilian [5 ]
Hu, Gongren [5 ]
Choi, Sung-Deuk [8 ]
Xue, Likun [9 ]
Chen, Jinsheng [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Urban Environm, Ctr Excellence Reg Atmospher Environm, Key Lab Urban Environm & Hlth, Xiamen 361021, Peoples R China
[2] Inst Urban Environm, Chinese Acad Sci, Fujian Key Lab Atmospher Ozone Pollut Prevent, Xiamen 361021, Peoples R China
[3] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[4] Fujian Agr & Forest Univ, Coll JunCao Sci & Ecol, Fuzhou 350002, Peoples R China
[5] Huaqiao Univ, Coll Chem Engn, Xiamen 361021, Peoples R China
[6] Xiamen Huaxia Univ, Coll Environm & Publ Hlth, Xiamen 361024, Peoples R China
[7] Hebei Univ, Sch Life Sci, Baoding 071000, Peoples R China
[8] Ulsan Natl Inst Sci & Technol, Dept Urban & Environm Engn, Ulsan 44919, South Korea
[9] Shandong Univ, Environm Res Inst, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
CHEMICAL MECHANISM; HONG-KONG; HYDROXYMETHANESULFONATE; CHEMISTRY; POLLUTION; CAPACITY; AEROSOL; OZONE; HAZE;
D O I
10.5194/acp-23-10795-2023
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To develop effective strategies for controlling both PM2.5 and O-3 levels, it is crucial to understand their synergistic mechanisms and key precursors and the atmospheric physiochemical processes involved. In this study, a wintertime co-occurring O-3 and PM2.5 pollution event in a coastal city in southeast China was investigated based on high-time-resolution measurements of criteria air pollutants and chemical compositions of PM2.5, and O-3 precursors, such as NOx, HCHO, and volatile organic compounds (VOCs). The results of this study revealed the characteristics of positively correlated PM2.5 and MDA8 O-3 concentrations, and an increase in atmospheric oxidation capacity (AOC) during the cold seasons. Strong correlations (R-2= 0.415-0.477) between HCHO, Fe, Mn, and sulfate concentrations were observed, suggesting the influence of catalyzed oxidation processes in the coastal city. Through an observation-based model (OBM) analysis coupled with the Regional Atmospheric Chemistry Mechanism, version 2 (RACM2) and the Chemical Aqueous-Phase Radical Mechanism, version 3.0 (CAPRAM 3.0), we found that high concentrations of precursors (SO2 and HCHO), high relative humidity, and moderately acidic pH conditions enhanced the heterogeneous formation of hydroxymethanesulfonate (HMS) in PM2.5. Furthermore, by employing an OBM coupled to the Master Chemical Mechanism (OBM-MCM), we verified that disabling the HCHO mechanism could decrease daytime net O-3 production rates by reducing the production rates of HO2 + NO. These results were consistent with the daily values of AOC, OH, HO2, and RO2 concentrations. This study contributes to a better understanding of the significance of HCHO in photochemical reactions and the formation of HMS in a coastal city.
引用
收藏
页码:10795 / 10807
页数:13
相关论文
共 50 条
  • [21] The underlying mechanisms of PM2.5 and O3 synergistic pollution in East China: Photochemical and heterogeneous interactions
    Qu, Yawei
    Wang, Tijian
    Yuan, Cheng
    Wu, Hao
    Gao, Libo
    Huang, Congwu
    Li, Yasong
    Li, Mengmeng
    Xie, Min
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 873
  • [22] Identifying the spatiotemporal patterns and natural and socioeconomic influencing factors of PM2.5 and O3 pollution in China
    Zhan, Dongsheng
    Wang, Zichen
    Xiang, Hongyang
    Xu, Yukang
    Zhou, Kan
    PLOS ONE, 2025, 20 (02):
  • [23] Tracking PM2.5 and O3 Pollution and the Related Health Burden in China 2013-2020
    Xiao, Qingyang
    Geng, Guannan
    Xue, Tao
    Liu, Shigan
    Cai, Cilan
    He, Kebin
    Zhang, Qiang
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (11) : 6922 - 6932
  • [24] Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China
    Wang, Pengfei
    Guo, Hao
    Hu, Jianlin
    Kota, Sri Harsha
    Ying, Qi
    Zhang, Hongliang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 662 : 297 - 306
  • [25] The Characteristics of PM2.5 and O3 Synergistic Pollution in the Sichuan Basin Urban Agglomeration
    Li, Shaorong
    Guo, Jianhui
    Wang, Yaqi
    Lian, Xinyao
    Li, Jing
    ATMOSPHERE, 2025, 16 (03)
  • [26] Evaluation of Ensemble Approach for O3 and PM2.5 Simulation
    Morino Y.
    Chatani S.
    Hayami H.
    Sasaki K.
    Mori Y.
    Morikawa T.
    Ohara T.
    Hasegawa S.
    Kobayashi S.
    Asian Journal of Atmospheric Environment, 2010, 4 (3) : 150 - 156
  • [27] Downwind O3 and PM2.5 speciation during the wildfires in 2002 and 2010
    Kang, Choong-Min
    Gold, Diane
    Koutrakis, Petros
    ATMOSPHERIC ENVIRONMENT, 2014, 95 : 511 - 519
  • [28] Estimation of health risk and economic loss attributable to PM2.5 and O3 pollution in Jilin Province, China
    Yuxia Ma
    Yifan Zhang
    Wanci Wang
    Pengpeng Qin
    Heping Li
    Haoran Jiao
    Jing Wei
    Scientific Reports, 13
  • [29] The role of NOx in Co-occurrence of O3 and PM2.5 pollution driven by wintertime east Asian monsoon in Hainan
    Zhan, Junlei
    Zheng, Feixue
    Xie, Rongfu
    Liu, Jun
    Chu, Biwu
    Ma, Jinzhu
    Xie, Donghai
    Meng, Xinxin
    Huang, Qing
    He, Hong
    Liu, Yongchun
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 345
  • [30] Characteristics of PM2.5 Pollution with Comparative Analysis of O3 in Autumn-Winter Seasons of Xingtai, China
    Wang, Han
    Wang, Shulan
    Zhang, Jingqiao
    Li, Hui
    ATMOSPHERE, 2021, 12 (05)