Transcriptome Analysis Reveals Drought-Responsive Pathways and Key Genes of Two Oat (Avena sativa) Varieties

被引:2
|
作者
Xu, Weiwei [1 ,2 ]
Guo, Laichun [2 ,3 ]
Wang, Chunlong [2 ]
Wei, Liming [2 ]
Wang, Qiang [2 ,3 ]
Ren, Qinyong [1 ,2 ]
Yang, Xiwu [1 ,2 ]
Zhan, Chao [2 ]
Liang, Xiaotian [1 ,2 ]
Wang, Junying [4 ]
Ren, Changzhong [1 ,2 ]
机构
[1] Jilin Agr Univ, Agron Coll, Changchun 130118, Peoples R China
[2] Baicheng Acad Agr Sci, Natl Oat Improvement Ctr, Baicheng 137000, Peoples R China
[3] Chengdu Univ, Coll Food & Biol Engn, Chengdu 610106, Peoples R China
[4] Chinese Acad Agr Sci, Biotechnol Res Inst, Beijing 100081, Peoples R China
来源
PLANTS-BASEL | 2024年 / 13卷 / 02期
关键词
oat; soil drought stress; leaf ultrastructure; cell wall; CUTICULAR WAXES; ARABIDOPSIS; STRESS; BIOSYNTHESIS; EXPRESSION; POLYSACCHARIDES; ACCUMULATION; METABOLISM; RESISTANCE; TOLERANCE;
D O I
10.3390/plants13020177
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To cope with the yield loss caused by drought stress, new oat varieties with greater drought tolerance need to be selected. In this study, two oat varieties with different drought tolerances were selected for analysis of their phenotypes and physiological indices under moderate and severe soil drought stress. The results revealed significant differences in the degree of wilting, leaf relative water content (RWC), and SOD and CAT activity between the two oat genotypes under severe soil drought stress; moreover, the drought-tolerant variety exhibited a significant increase in the number of stomata and wax crystals on the surface of both the leaf and guard cells; additionally, the morphology of the guard cells was normal, and there was no significant disruption of the grana lamella membrane or the nuclear envelope. Furthermore, transcriptome analysis revealed that the expression of genes related to the biosynthesis of waxes and cell-wall components, as well as those of the WRKY family, significantly increased in the drought-tolerant variety. These findings suggest that several genes involved in the antioxidant pathway could improve drought tolerance in plants by regulating the increase/decrease in wax and cell-wall constituents and maintaining normal cellular water potential, as well as improving the ability of the antioxidant system to scavenge peroxides in oats.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] New insights on the regulatory network of drought-responsive key genes in Arabidopsis thaliana
    Maryam Pasandideh Arjmand
    Habibollah Samizadeh Lahiji
    Mohammad Mohsenzadeh Golfazani
    Mohammad Hassan Biglouei
    Genetica, 2023, 151 : 29 - 45
  • [22] Codonopsis pilosula seedling drought- responsive key genes and pathways revealed by comparative transcriptome
    Wang, Hongyan
    Chen, Yuan
    Liu, Lanlan
    Guo, Fengxia
    Liang, Wei
    Dong, Linlin
    Dong, Pengbin
    Cheng, Jiali
    Chen, Yongzhong
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [23] De novo transcriptome sequencing and comprehensive analysis of the drought-responsive genes in the desert plant Cynanchum komarovii
    Xiaowen Ma
    Ping Wang
    Sihong Zhou
    Yun Sun
    Nana Liu
    Xiaoning Li
    Yuxia Hou
    BMC Genomics, 16
  • [24] New insights on the regulatory network of drought-responsive key genes in Arabidopsis thaliana
    Arjmand, Maryam Pasandideh
    Lahiji, Habibollah Samizadeh
    Golfazani, Mohammad Mohsenzadeh
    Biglouei, Mohammad Hassan
    GENETICA, 2023, 151 (01) : 29 - 45
  • [25] Transcriptome analysis of drought-responsive and drought-tolerant mechanisms in maize leaves under drought stress
    Jiang, Yuan
    Su, Shengzhong
    Chen, Hao
    Li, Shipeng
    Shan, Xiaohui
    Li, He
    Liu, Hongkui
    Dong, Haixiao
    Yuan, Yaping
    PHYSIOLOGIA PLANTARUM, 2023, 175 (02)
  • [26] Differential Expression Analysis of a Subset of Drought-Responsive GmNAC Genes in Two Soybean Cultivars Differing in Drought Tolerance
    Nguyen Phuong Thao
    Nguyen Binh Anh Thu
    Xuan Lan Thi Hoang
    Chien Van Ha
    Lam-Son Phan Tran
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (12): : 23828 - 23841
  • [27] Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages
    Liu, Songtao
    Zenda, Tinashe
    Li, Jiao
    Wang, Yafei
    Liu, Xinyue
    Duan, Huijun
    PLOS ONE, 2020, 15 (10):
  • [28] Gene Differential Co-expression Network Analysis Reveals Drought-responsive Crucial Genes in Sorghum
    Bi, YiLin
    Wang, Pei
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5705 - 5710
  • [29] Transcriptome analysis of drought-responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves
    Li, Hua
    Li, Min
    Wei, Xingliang
    Zhang, Xia
    Xue, Ruili
    Zhao, Yidan
    Zhao, Huijie
    MOLECULAR GENETICS AND GENOMICS, 2017, 292 (05) : 1091 - 1110
  • [30] Comparative analysis of the drought-responsive transcriptome in soybean lines contrasting for canopy wilting
    Prince, Silvas J.
    Joshi, Trupti
    Mutava, Raymond N.
    Syed, Naeem
    Vitor, Maldonado dos Santos Joao
    Patil, Gunvant
    Song, Li
    Wang, JiaoJiao
    Lin, Li
    Chen, Wei
    Shannon, J. Grover
    Valliyodan, Babu
    Xu, Dong
    Nguyen, Henry T.
    PLANT SCIENCE, 2015, 240 : 65 - 78