Machine learning-based guilt detection in text

被引:3
|
作者
Meque, Abdul Gafar Manuel [1 ,2 ]
Hussain, Nisar [1 ]
Sidorov, Grigori [1 ]
Gelbukh, Alexander [1 ]
机构
[1] Inst Politecn Nacl IPN, Ctr Invest Comp CIC, Mexico City, Mexico
[2] Catholic Univ Mozambique, Fac Econ & Gestao, Beira 2100, Mozambique
关键词
MEDIATOR; IDEATION;
D O I
10.1038/s41598-023-38171-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce a novel Natural Language Processing (NLP) task called guilt detection, which focuses on detecting guilt in text. We identify guilt as a complex and vital emotion that has not been previously studied in NLP, and we aim to provide a more fine-grained analysis of it. To address the lack of publicly available corpora for guilt detection, we created VIC, a dataset containing 4622 texts from three existing emotion detection datasets that we binarized into guilt and no-guilt classes. We experimented with traditional machine learning methods using bag-of-words and term frequency-inverse document frequency features, achieving a 72% f1 score with the highest-performing model. Our study provides a first step towards understanding guilt in text and opens the door for future research in this area.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] MACHINE LEARNING-BASED ANDROID INTRUSION DETECTION SYSTEM
    Tahreem, Madiha
    Andleeb, Ifrah
    Hussain, Bilal Zahid
    Hameed, Arsalan
    arXiv,
  • [22] Machine Learning-Based Profiling in Test Cheating Detection
    Meng, Huijuan
    Ma, Ye
    EDUCATIONAL MEASUREMENT-ISSUES AND PRACTICE, 2023, 42 (01) : 59 - 75
  • [23] Machine Learning-Based Attack Detection for the Internet of Things
    Bikila, Dawit Dejene
    Capek, Jan
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2025, 166
  • [24] Machine Learning-Based Systems for Intrusion Detection in VANETs
    Idris, Hala Eldaw
    Hosni, Ines
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3, INTELLISYS 2024, 2024, 1067 : 603 - 614
  • [25] Machine Learning-Based Detection of Ransomware Using SDN
    Cusack, Greg
    Michel, Oliver
    Keller, Eric
    PROCEEDINGS OF THE 2018 ACM INTERNATIONAL WORKSHOP ON SECURITY IN SOFTWARE DEFINED NETWORKS & NETWORK FUNCTION VIRTUALIZATION (SDN-NFVSEC'18), 2018, : 1 - 6
  • [26] Machine Learning-Based Method for Structural Damage Detection
    Irawan, Daniel
    Morozov, Evgeny V.
    Tahtali, Murat
    DATA SCIENCE IN ENGINEERING, VOL. 10, IMAC 2024, 2025, : 137 - 142
  • [27] Supervised Machine Learning-Based Detection of Concrete Efflorescence
    Fan, Ching-Lung
    Chung, Yu-Jen
    SYMMETRY-BASEL, 2022, 14 (11):
  • [28] Machine Learning-based Anomaly Detection for Particle Accelerators
    Marcato, Davide
    Arena, Giovanni
    Bortolato, Damiano
    Gelain, Fabio
    Martinelli, Valentina
    Munaron, Enrico
    Roetta, Marco
    Savarese, Giovanni
    Susto, Gian Antonio
    5TH IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (IEEE CCTA 2021), 2021, : 240 - 246
  • [29] Machine Learning-Based Attack Detection Method in Hadoop
    Li, Ningwei
    Gao, Hang
    Liu, Liang
    Peng, Jianfei
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2020, PT III, 2020, 12454 : 184 - 196
  • [30] Machine Learning-Based Malicious Application Detection of Android
    Wei, Linfeng
    Luo, Weiqi
    Weng, Jian
    Zhong, Yanjun
    zhang, Xiaoqian
    Yan, Zheng
    IEEE ACCESS, 2017, 5 : 25591 - 25601