Operando spectral imaging of the lithium ion battery's solid-electrolyte interphase

被引:15
|
作者
Lodico, Jared J. [1 ,2 ]
Mecklenburg, Matthew [2 ,3 ]
Chan, Ho Leung [1 ,2 ]
Chen, Yueyun [1 ,2 ]
Ling, Xin Yi [1 ]
Regan, B. C. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
[3] Univ Southern Calif, Core Ctr Excellence Nano Imaging, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
IN-SITU; MICROSCOPY; INTERFACES; EELS; SPECTROSCOPY; DENDRITES; GROWTH; STATE; SEI;
D O I
10.1126/sciadv.adg5135
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The lithium-ion battery is currently the preferred power source for applications ranging from smart phones to electric vehicles. Imaging the chemical reactions governing its function as they happen, with nanoscale spatial resolution and chemical specificity, is a long-standing open problem. Here, we demonstrate operando spectrum imaging of a Li-ion battery anode over multiple charge-discharge cycles using electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). Using ultrathin Li-ion cells, we acquire reference EELS spectra for the various constituents of the solid-electrolyte interphase (SEI) layer and then apply these "chemical fingerprints" to high-resolution, real-space mapping of the corresponding physical structures. We observe the growth of Li and LiH dendrites in the SEI and fingerprint the SEI itself. High spatial- and spectral-resolution operando imaging of the air-sensitive liquid chemistries of the Li-ion cell opens a direct route to understanding the complex, dynamic mechanisms that affect battery safety, capacity, and lifetime.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Solvation Rule for Solid-Electrolyte Interphase Enabler in Lithium-Metal Batteries
    Su, Chi-Cheung
    He, Meinan
    Shi, Jiayan
    Amine, Rachid
    Zhang, Jian
    Amine, Khalil
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (41) : 18229 - 18233
  • [42] Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes
    Shadike, Zulipiya
    Lee, Hongkyung
    Borodin, Oleg
    Cao, Xia
    Fan, Xiulin
    Wang, Xuelong
    Lin, Ruoqian
    Bak, Seong-Min
    Ghose, Sanjit
    Xu, Kang
    Wang, Chunsheng
    Liu, Jun
    Xiao, Jie
    Yang, Xiao-Qing
    Hu, Enyuan
    NATURE NANOTECHNOLOGY, 2021, 16 (05) : 549 - 554
  • [43] In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li-S Batteries
    Nandasiri, Manjula I.
    Camacho-Forero, Luis E.
    Schwarz, Ashleigh M.
    Shutthanandan, Vaithiyalingam
    Thevuthasan, Suntharampillai
    Balbuena, Perla B.
    Mueller, Karl T.
    Murugesan, Vijayakumar
    CHEMISTRY OF MATERIALS, 2017, 29 (11) : 4728 - 4737
  • [44] Operando investigations of the solid electrolyte interphase in the lithium mediated nitrogen reduction reaction
    Deissler, Niklas H.
    Mygind, J. Bjarke V.
    Li, Katja
    Niemann, Valerie A.
    Benedek, Peter
    Vinci, Valentin
    Li, Shaofeng
    Fu, Xianbiao
    Vesborg, Peter C. K.
    Jaramillo, Thomas F.
    Kibsgaard, Jakob
    Drnec, Jakub
    Chorkendorff, Ib
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (10) : 3482 - 3492
  • [45] Impact of solid-electrolyte interphase reformation on capacity loss in silicon-based lithium-ion batteries
    Vorauer, T.
    Schoeggl, J.
    Sanadhya, S. G.
    Poluektov, M.
    Widanage, W. D.
    Figiel, L.
    Schaedler, S.
    Tordoff, B.
    Fuchsbichler, B.
    Koller, S.
    Brunner, R.
    COMMUNICATIONS MATERIALS, 2023, 4 (01)
  • [46] Stability of Solid-Electrolyte Interphase (SEI) on the Lithium Metal Surface in Lithium Metal Batteries (LMBs)
    Ramasubramanian, Ajaykrishna
    Yurkiv, Vitaliy
    Foroozan, Tara
    Ragone, Marco
    Shahbazian-Yassar, Reza
    Mashayek, Farzad
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (11) : 10560 - 10567
  • [47] Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium-ion cells for EV applications
    Menkin, S.
    Golodnitsky, D.
    Peled, E.
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (09) : 1789 - 1791
  • [48] Impact of solid-electrolyte interphase reformation on capacity loss in silicon-based lithium-ion batteries
    T. Vorauer
    J. Schöggl
    S. G. Sanadhya
    M. Poluektov
    W. D. Widanage
    L. Figiel
    S. Schädler
    B. Tordoff
    B. Fuchsbichler
    S. Koller
    R. Brunner
    Communications Materials, 4
  • [49] First-Principles Calculation Study on Solid Electrolyte Interphase (SEI) in Lithium Ion Battery
    Tateyama, Yoshitaka
    JOURNAL OF COMPUTER CHEMISTRY-JAPAN, 2019, 18 (01) : 18 - 28
  • [50] Lithium Nitrate as Salt Additive for Solid Electrolyte Interphase Formation in Dual-Ion Battery
    Das, Sandeep
    Pathak, Biswarup
    BATTERIES & SUPERCAPS, 2023, 6 (09)