Application of Time-Frequency Analysis in Rotating Machinery Fault Diagnosis

被引:16
|
作者
Bai, Yihao [1 ]
Cheng, Weidong [1 ]
Wen, Weigang [1 ]
Liu, Yang [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Mech Elect & Control Engn, Beijing 100044, Peoples R China
关键词
TURBINE PLANETARY GEARBOX; EMPIRICAL MODE DECOMPOSITION; VOLD-KALMAN FILTER; SYNCHROSQUEEZING TRANSFORM; FEATURE-EXTRACTION; WAVELET TRANSFORM; SPEED CONDITIONS; BEARINGS; SIGNAL; REPRESENTATIONS;
D O I
10.1155/2023/9878228
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Fault diagnosis is an important means to ensure the safe and reliable operation of mechanical equipment. In machinery fault diagnosis, collecting and mining the potential fault information of the vibration signal is the most commonly used method to reflect the operating status of the equipment. In engineering scenarios, in the face of rotating machinery with variable speed, simple time domain analysis or frequency domain analysis is difficult to solve the problem. The time-frequency analysis technology that combines time-frequency transformation and data analysis can solve practical engineering problems by capturing the transient information of the signal. At present, a large number of related literatures have been published in academic journals. This paper hopes to provide convenience for relevant researchers and motivate researchers to further explore by summarizing the published literature. First, this paper briefly explains the concept of time-frequency analysis and its development. Then, the time-frequency transformation method proposed for the characteristics of rotating machinery fault vibration signal and related works of literature are reviewed, and the key issues of the application of time-frequency transformation method in rotating machinery fault diagnosis are discussed. Next, this paper summarizes the relevant literature on the combination of data analysis technology and time-frequency transformation and sorts out its development route and prospects. The study reveals that time-frequency analysis technology is able to detect the rotating machinery fault effectively. The time-frequency analysis technology has made abundant achievements in the field of rotating machinery fault diagnosis. It is expected that this review would inspire researchers to explore the potential of time-frequency analysis as well as to develop advanced research in this field.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Time-frequency Hypergraph Neural Network for Rotating Machinery Fault Diagnosis with Limited Data
    Ke, Haobin
    Chen, Zhiwen
    Xu, Jiamin
    Fan, Xinyu
    Yang, Chao
    Peng, Tao
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 1786 - 1792
  • [12] A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
    Attaran, B.
    Ghanbarzadeh, A.
    Moradi, S.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2020, 33 (04): : 668 - 675
  • [13] A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
    Attaran B.
    Ghanbarzadeh A.
    Moradi S.
    International Journal of Engineering, Transactions A: Basics, 2020, 33 (04): : 668 - 675
  • [14] Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples
    Feng, Zhipeng
    Liang, Ming
    Chu, Fulei
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2013, 38 (01) : 165 - 205
  • [15] Time-frequency analysis based on ensemble local mean decomposition and fast kurtogram for rotating machinery fault diagnosis
    Wang, Lei
    Liu, Zhiwen
    Miao, Qiang
    Zhang, Xin
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 103 : 60 - 75
  • [16] Rotating Machinery Fault Diagnosis Based on EEMD Time-Frequency Energy and SOM Neural Network
    Wang, Hao
    Gao, Jinji
    Jiang, Zhinong
    Zhang, Junjie
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (06) : 5207 - 5217
  • [17] Rotating Machinery Fault Diagnosis Based on EEMD Time-Frequency Energy and SOM Neural Network
    Hao Wang
    Jinji Gao
    Zhinong Jiang
    Junjie Zhang
    Arabian Journal for Science and Engineering, 2014, 39 : 5207 - 5217
  • [18] Application of harmonic wavelet and its time-frequency profile plot to diagnosis of rotating machinery
    Gao, Qiang
    He, Zhengjia
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2000, 34 (09): : 62 - 66
  • [19] Research on the Time-frequency Analysis Method to Extract Early Fault Features of Rotating Machinery
    Ju Pinghua
    Zhang Genbao
    DIGITAL MANUFACTURING & AUTOMATION III, PTS 1 AND 2, 2012, 190-191 : 1371 - 1375
  • [20] Time-Frequency Envelope Analysis for Fault Detection of Rotating Machinery Signals with Impulsive Noise
    Lee, Dong-Hyeon
    Hong, Chinsuk
    Jeong, Weui-Bong
    Ahn, Sejin
    APPLIED SCIENCES-BASEL, 2021, 11 (12):