A simple algorithm for expanding a power series as a continued fraction

被引:3
|
作者
Sokal, Alan D. [1 ,2 ]
机构
[1] UCL, Dept Math, London WC1E 6BT, England
[2] NYU, Dept Phys, 726 Broadway, New York, NY 10003 USA
基金
英国工程与自然科学研究理事会;
关键词
Formal power series; Continued fraction; Euler-Viscovatov algorithm; Gauss's continued fraction; Euler-Gauss recurrence method; Motzkin path; Dyck path; Stieltjes table; Rogers' addition formula; HYPERGEOMETRIC-SERIES; ELLIPTIC FUNCTIONS; PROOF;
D O I
10.1016/j.exmath.2022.12.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
I present and discuss an extremely simple algorithm for expanding a formal power series as a continued fraction. This algorithm, which goes back to Euler (1746) and Viscovatov (1805), deserves to be better known. I also discuss the connection of this algorithm with the work of Gauss (1812), Stieltjes (1889), Rogers (1907) and Ramanujan, and a combinatorial interpretation based on the work of Flajolet (1980).& COPY; 2022 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:245 / 287
页数:43
相关论文
共 50 条
  • [31] THE CONTINUED-FRACTION EXPANSION OF AN ALGEBRAIC POWER-SERIES SATISFYING A QUARTIC EQUATION
    BUCK, MW
    ROBBINS, DP
    JOURNAL OF NUMBER THEORY, 1995, 50 (02) : 335 - 344
  • [32] The continued fraction expansion of certain Pierce series
    Varona, Juan Luis
    JOURNAL OF NUMBER THEORY, 2017, 180 : 573 - 578
  • [33] A simple and fast algorithm for computing exponentials of power series
    Bostan, Alin
    Schost, Eric
    INFORMATION PROCESSING LETTERS, 2009, 109 (13) : 754 - 756
  • [34] Finding both, the continued fraction and the Laurent series expansion of golden ratio analogs in the field of formal power series
    Hofer, Roswitha
    JOURNAL OF NUMBER THEORY, 2021, 223 : 168 - 194
  • [35] CONTINUED FRACTION ALGORITHM FOR REAL ALGEBRAIC NUMBERS
    CANTOR, DG
    ZIMMER, HG
    GALYEAN, PH
    MATHEMATICS OF COMPUTATION, 1972, 26 (119) : 785 - &
  • [36] Odd-odd continued fraction algorithm
    Kim, Dong Han
    Lee, Seul Bee
    Liao, Lingmin
    MONATSHEFTE FUR MATHEMATIK, 2022, 198 (02): : 323 - 344
  • [37] GENERALIZATION OF CONTINUED FRACTION ALGORITHM .2.
    GUTING, R
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1976, 281 : 184 - 198
  • [38] Odd-odd continued fraction algorithm
    Dong Han Kim
    Seul Bee Lee
    Lingmin Liao
    Monatshefte für Mathematik, 2022, 198 : 323 - 344
  • [39] GENERALIZATION OF CONTINUED FRACTION ALGORITHM .1.
    GUTING, R
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1975, 278 (NOV28): : 165 - 173
  • [40] Continued fraction algorithm for Sturmian colorings of trees
    Kim, Dong Han
    Lim, Seonhee
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 2541 - 2569