Analysis of Navier-Stokes Models for Flows in Bidisperse Porous Media

被引:2
|
作者
Kohr, Mirela [1 ]
Precup, Radu [2 ,3 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, 1 M Kogalniceanu Str, Cluj Napoca 400084, Romania
[2] Babes Bolyai Univ, Inst Adv Studies Sci & Technol, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
[3] Romanian Acad, Tiberiu Popoviciu Inst Numer Anal, POB 68-1400110, Cluj Napoca, Romania
关键词
Navier-Stokes equations; Bidisperse porous media; Fixed point technique; BOUNDARY-VALUE-PROBLEMS; FORCED-CONVECTION; LIPSCHITZ-DOMAINS; EQUATIONS; SYSTEM;
D O I
10.1007/s00021-023-00784-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Having in view a model proposed by Nield and Kuznetsov (Transp Porous Media 59:325-339, 2005; Transp Porous Media 96:495-499, 2013), we consider a more general system of coupled Navier-Stokes type equations in the incompressible case subject to the homogeneous Dirichlet condition in a bounded domain. We provide a deep theoretical analysis for large classes of equations and coupled systems of Navier-Stokes type with various non-homogeneous terms of reaction type. Existence results are obtained by using a variational approach making use of several fixed point principles and matrix theory.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] PARALLEL COMPUTATION OF EULER AND NAVIER-STOKES FLOWS
    SWISSHELM, JM
    JOHNSON, GM
    KUMAR, SP
    APPLIED MATHEMATICS AND COMPUTATION, 1986, 19 (1-4) : 321 - 331
  • [32] Attractors for the inhomogeneous incompressible Navier-Stokes flows
    Han, Pigong
    Lei, Keke
    Liu, Chenggang
    Wang, Xuewen
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 69
  • [33] Global Navier-Stokes flows in intermediate spaces
    Bradshaw, Zachary
    Chernobai, Misha
    Tsai, Tai-Peng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 429 : 50 - 87
  • [34] On Weighted Estimates for the Stokes Flows, with Application to the Navier-Stokes Equations
    Han, Pigong
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (03) : 1155 - 1172
  • [35] The Stokes Complex for Virtual Elements with Application to Navier-Stokes Flows
    Beirao da Veiga, L.
    Mora, D.
    Vacca, G.
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (02) : 990 - 1018
  • [36] Upscaling of Navier-Stokes equations in porous media: Theoretical, numerical and experimental approach
    Narsilio, Guillermo A.
    Buzzi, Olivier
    Fityus, Stephen
    Yun, Tae Sup
    Smith, David W.
    COMPUTERS AND GEOTECHNICS, 2009, 36 (07) : 1200 - 1206
  • [37] Numerical analysis of Vanka-type solvers for steady Stokes and Navier-Stokes flows
    Manservisi, S.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) : 2025 - 2056
  • [38] The Navier-Stokes flows changing to non-Newtonian flows
    Kato, H
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 1067 - 1072
  • [39] NAVIER-STOKES SOLUTIONS FOR CHEMICAL LASER FLOWS COLD FLOWS
    KOTHARI, AP
    ANDERSON, JD
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (11): : 1443 - 1443
  • [40] Analysis of generalized Navier-Stokes equations for stationary shear thickening flows
    Breit, D.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (14) : 5549 - 5560