Deep learning for predicting epidermal growth factor receptor mutations of non-small cell lung cancer on PET/CT images

被引:7
|
作者
Xiao, Zhenghui [1 ,2 ]
Cai, Haihua [1 ]
Wang, Yue [3 ]
Cui, Ruixue [4 ]
Huo, Li [4 ]
Lee, Elaine Yuen-Phin [5 ]
Liang, Ying [6 ,7 ]
Li, Xiaomeng [8 ]
Hu, Zhanli [1 ]
Chen, Long [3 ]
Zhang, Na [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Lauterbur Res Ctr Biomed Imaging, 1068 Xueyuan Ave, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Shenzhen, Peoples R China
[3] Kunming Med Univ, Yunnan Canc Hosp, Dept PET, Canc Ctr Yunnan Prov,CT Ctr,Affiliated Hosp 3, 519 Kunzhou Rd, Kunming 650118, Peoples R China
[4] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Ctr Rare Dis Res, Beijing Key Lab Mol Targeted Diag & Therapy Nucl M, Beijing, Peoples R China
[5] Univ Hong Kong, Li Ka Shing Fac Med, Clin Sch Med, Dept Diagnost Radiol, Hong Kong, Peoples R China
[6] Chinese Acad Med Sci & Peking Union Med Coll, Canc Hosp, Natl Canc Ctr, Natl Clin Res Ctr Canc,Dept Nucl Med, Shenzhen, Peoples R China
[7] Chinese Acad Med Sci & Peking Union Med Coll, Shenzhen Hosp, Shenzhen, Peoples R China
[8] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China
关键词
CT IMAGES; EGFR; ADENOCARCINOMA; FEATURES; CHEMOTHERAPY; ASSOCIATION;
D O I
10.21037/qims-22-760
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Predicting the mutation status of the epidermal growth factor receptor (EGFR) gene based on an integrated positron emission tomography/computed tomography (PET/CT) image of non-small cell lung cancer (NSCLC) is a noninvasive, low-cost method which is valuable for targeted therapy. Although deep learning has been very successful in robotic vision, it is still challenging to predict gene mutations in PET/CT-derived studies because of the small amount of medical data and the different parameters of PET/ CT devices.Methods: We used the advanced EfficientNet-V2 model to predict the EGFR mutation based on fused PET/CT images. First, we extracted 3-dimensional (3D) pulmonary nodules from PET and CT as regions of interest (ROIs). We then fused each single PET and CT image. The network model was used to predict the mutation status of lung nodules by the new data after fusion, and the model was weighted adaptively. The EfficientNet-V2 model used multiple channels to represent nodules comprehensively.Results: We trained the EfficientNet-V2 model through our PET/CT fusion algorithm using a dataset of 150 patients. The prediction accuracy of EGFR and non-EGFR mutations was 86.25% in the training dataset, and the accuracy rate was 81.92% in the validation set.Conclusions: Combined with experiments, the demonstrated PET/CT fusion algorithm outperformed radiomics methods in predicting EGFR and non-EGFR mutations in NSCLC.
引用
收藏
页码:1286 / 1299
页数:14
相关论文
共 50 条
  • [31] Epidermal growth factor receptor inhibitors in non-small cell lung cancer
    Dancey, Janet E.
    DRUGS, 2007, 67 (08) : 1125 - 1138
  • [32] Epidermal growth factor receptor inhibition and non-small cell lung cancer
    von Eyben, Finn Edler
    CRITICAL REVIEWS IN CLINICAL LABORATORY SCIENCES, 2006, 43 (04) : 291 - 323
  • [33] Epidermal Growth Factor Receptor Inhibitors in Non-Small Cell Lung Cancer
    Janet E. Dancey
    Drugs, 2007, 67 : 1125 - 1138
  • [34] Outcomes of an Australian testing programme for epidermal growth factor receptor mutations in non-small cell lung cancer
    Peters, M. J.
    Bowden, J. J.
    Carpenter, P.
    Lewis, J.
    Solomon, B.
    INTERNAL MEDICINE JOURNAL, 2014, 44 (06) : 575 - 580
  • [35] A PROSPECTIVE STUDY ON EPIDERMAL GROWTH FACTOR RECEPTOR MUTATIONS IN NON-SMALL CELL LUNG CANCER IN MALAYSIAN PATIENTS
    Liam, C. K.
    Leow, H. R.
    How, S. H.
    Pang, Y. K.
    Chua, K. T.
    Lai, N. L.
    Lim, B. K.
    Lee, C. H.
    Kuan, Y. C.
    Jayalakshimi, P.
    Pathmanathan, R.
    RESPIROLOGY, 2012, 17 : 92 - 92
  • [36] Frequency and Type of Epidermal Growth Factor Receptor Mutations in African Americans with Non-small Cell Lung Cancer
    Cote, Michele L.
    Haddad, Ramsi
    Edwards, David J.
    Atikukke, Govindaraja
    Gadgeel, Shirish
    Soubani, Ayman O.
    Lonardo, Fulvio
    Bepler, Gerold
    Schwartz, Ann G.
    Ethier, Stephen P.
    JOURNAL OF THORACIC ONCOLOGY, 2011, 6 (03) : 627 - 630
  • [37] Clinicopathologic significance of the mutations of the epidermal growth factor receptor gene in patients with non-small cell lung cancer
    Tomizawa, Y
    Iijima, H
    Sunaga, N
    Sato, K
    Takise, A
    Otani, Y
    Tanaka, S
    Suga, T
    Saito, R
    Ishizuka, T
    Dobashi, K
    Minna, JD
    Nakajima, T
    Mori, M
    CLINICAL CANCER RESEARCH, 2005, 11 (19) : 6816 - 6822
  • [38] A new rapid method for detecting epidermal growth factor receptor mutations in non-small cell lung cancer
    Takata, Miyako
    Chikumi, Hiroki
    Matsunami, Keiji
    Kodani, Masahiro
    Sakamoto, Tomohiro
    Hashimoto, Kazuhiro
    Nakamoto, Masaki
    Okada, Kensaku
    Kitaura, Tsuyoshi
    Matsumoto, Shingo
    Kurai, Jun
    Yamasaki, Akira
    Igishi, Tadashi
    Burioka, Naoto
    Shimizu, Eiji
    ONCOLOGY REPORTS, 2015, 33 (03) : 1040 - 1048
  • [39] Prevalence of Epidermal Growth Factor Receptor Mutations in Patients with Non-Small Cell Lung Cancer in Turkish Population
    Tezel, Gaye Guler
    Sener, Ebru
    Aydin, Cisel
    Onder, Sevgen
    BALKAN MEDICAL JOURNAL, 2017, 34 (06) : 567 - 571
  • [40] IMMUNOHISTOCHEMICAL DETECTION OF EPIDERMAL GROWTH FACTOR RECEPTOR MUTATIONS IN PATIENTS WITH NON-SMALL CELL LUNG CANCER.
    Bondgaard, Anna-Louise
    Hoegdall, Estrid
    Mellemgaard, Anders
    Skov, Birgit G.
    JOURNAL OF THORACIC ONCOLOGY, 2013, 8 : S661 - S661