An inertial Popov extragradient projection algorithm for solving multi-valued variational inequality problems

被引:3
|
作者
Chen, Yi [1 ]
Ye, Minglu [1 ]
机构
[1] China West Normal Univ, Sch Math & Informat, Nanchong, Sichuan, Peoples R China
基金
美国国家科学基金会;
关键词
Multi-valued variational inequality; extragradient projection algorithm; inertial technique; Lipschitz continuous; pseudomonotone; CONVERGENCE; MAPPINGS; POINTS;
D O I
10.1080/02331934.2022.2046741
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we present an inertial Popov extragradient projection algorithm for solving multi-valued variational inequality problems in finite-dimensional Euclidean space. The global convergence of this algorithm is proved whenever the underlying mapping is Lipschitz continuous and pseudomonotone on the feasible set. Numerical experiments show that new algorithm is more efficient than algorithm of Ye [An improved projection method for solving generalized variational inequality problems. Optimization. 2018;67:1-11] whenever the underlying mapping is Lipschitz continuous. Here inertial technique can accelerate extragradient algorithm although the underlying mapping is multi-valued.
引用
收藏
页码:2069 / 2089
页数:21
相关论文
共 50 条
  • [41] A NEW DOUBLE INERTIAL SUBGRADIENT EXTRAGRADIENT METHOD FOR SOLVING QUASIMONOTONE VARIATIONAL INEQUALITY PROBLEMS
    George, R.
    Ofem, A. E.
    Mebawondu, A. A.
    Akutsah, F.
    Alshammari, F.
    Narain, O. K.
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2025, 21 (03) : 2074 - 2090
  • [42] Relaxation inertial projection algorithms for solving monotone variational inequality problems
    Zhang, Yan
    Yang, Denglian
    Zhang, Yongle
    PACIFIC JOURNAL OF OPTIMIZATION, 2023, 19 (03): : 507 - 528
  • [43] INERTIAL SHRINKING PROJECTION ALGORITHMS FOR SOLVING HIERARCHICAL VARIATIONAL INEQUALITY PROBLEMS
    Tan, Bing
    Xu, Shanshan
    Li, Songxiao
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (04) : 871 - 884
  • [44] INERTIAL HYBRID AND SHRINKING PROJECTION ALGORITHMS FOR SOLVING VARIATIONAL INEQUALITY PROBLEMS
    Tan, Bing
    Xu, Shanshan
    Li, Songxiao
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (10) : 2193 - 2206
  • [45] Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems
    Duong Viet Thong
    Dang Van Hieu
    Rassias, Themistocles M.
    OPTIMIZATION LETTERS, 2020, 14 (01) : 115 - 144
  • [46] Viscosity-type inertial extragradient algorithms for solving variational inequality problems and fixed point problems
    Tan, Bing
    Zhou, Zheng
    Li, Songxiao
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (02) : 1387 - 1411
  • [47] Viscosity-type inertial extragradient algorithms for solving variational inequality problems and fixed point problems
    Bing Tan
    Zheng Zhou
    Songxiao Li
    Journal of Applied Mathematics and Computing, 2022, 68 : 1387 - 1411
  • [48] Modified Extragradient Methods with Inertial Technique for Solving Pseudo-Monotone Variational Inequality Problems
    Fu, Qingqing
    Cai, Gang
    Cholamjiak, Prasit
    Inkrong, Papatsara
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 102 (03)
  • [49] An inertial projection and contraction method for solving bilevel quasimonotone variational inequality problems
    Abuchu, J. A.
    Ugwunnadi, G. C.
    Narain, O. K.
    JOURNAL OF ANALYSIS, 2023, 31 (04): : 2915 - 2942
  • [50] An inertial projection and contraction method for solving bilevel quasimonotone variational inequality problems
    J. A. Abuchu
    G. C. Ugwunnadi
    O. K. Narain
    The Journal of Analysis, 2023, 31 (4) : 2915 - 2942