Strain Solitons in an Epitaxially Strained van der Waals-like Material

被引:1
|
作者
Dong, Jason T. [1 ]
Inbar, Hadass S. [1 ]
Dempsey, Connor P. [2 ]
Engel, Aaron N. [1 ]
Palmstrom, Christopher J. [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
关键词
van der Waals material; scanning tunnelingmicroscopy; bismuth; strain soliton; molecularbeam epitaxy;
D O I
10.1021/acs.nanolett.4c00382
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Strain solitons are quasi-dislocations that form in van der Waals materials to relieve the energy associated with lattice or rotational mismatch. Novel electronic properties of strain solitons were predicted and observed. To date, strain solitons have been observed only in exfoliated crystals or mechanically strained crystals. The lack of a scalable approach toward the generation of strain solitons poses a significant challenge in the study of and use of their properties. Here, we report the formation of strain solitons with epitaxial growth of bismuth on InSb(111)B by molecular beam epitaxy. The morphology of the strain solitons for films of varying thickness is characterized with scanning tunneling microscopy, and the local strain state is determined from atomic resolution images. Bending in the solitons is attributed to interactions with the interface, and large angle bending is associated with edge dislocations. Our results enable the scalable generation of strain solitons.
引用
收藏
页码:4493 / 4497
页数:5
相关论文
共 50 条
  • [31] Hematene: a 2D magnetic material in van der Waals or non-van der Waals heterostructures
    Gonzalez, R. I.
    Mella, J.
    Diaz, P.
    Allende, S.
    Vogel, E. E.
    Cardenas, C.
    Munoz, F.
    2D MATERIALS, 2019, 6 (04)
  • [32] Effects of the external string cloud on the Van der Waals-like behavior and efficiency of AdS-Schwarzschild black holes in massive gravity
    Ghanaatian, M.
    Sadeghi, Mehdi
    Ranjbari, Hadi
    Forozani, Gh
    MODERN PHYSICS LETTERS A, 2020, 35 (24)
  • [33] Limits of Coherency and Strain Transfer in Flexible 2D van der Waals Heterostructures: Formation of Strain Solitons and Interlayer Debonding
    Hemant Kumar
    Liang Dong
    Vivek B. Shenoy
    Scientific Reports, 6
  • [34] Limits of Coherency and Strain Transfer in Flexible 2D van der Waals Heterostructures: Formation of Strain Solitons and Interlayer Debonding
    Kumar, Hemant
    Dong, Liang
    Shenoy, Vivek B.
    SCIENTIFIC REPORTS, 2016, 6
  • [35] Strain tuning on Van der Waals negative capacitance transistors
    Chi, Mengshuang
    Li, Ailin
    Zhang, Xiang
    Li, Zekun
    Jia, Mengmeng
    Wang, Jie
    Wang, Zhong Lin
    Zhai, Junyi
    NANO ENERGY, 2024, 126
  • [36] Ionic Photovoltaics-in-Memory in van der Waals Material
    Li, Dongyan
    Li, Zexin
    Pan, Chen
    Sun, Yan
    Zhou, Jian
    Yangdong, Xingjian
    Xu, Xiang
    Liu, Lixin
    Wang, Haoyun
    Chen, Yunxin
    Song, Xingyu
    Liu, Pengbin
    Zhou, Xing
    Liang, Shi-Jun
    Miao, Feng
    Zhai, Tianyou
    ADVANCED MATERIALS, 2024, 36 (38)
  • [37] GeAs: Highly Anisotropic van der Waals Thermoelectric Material
    Lee, Kathleen
    Kamali, Saeed
    Ericsson, Tore
    Bellard, Maverick
    Kovnir, Kirill
    CHEMISTRY OF MATERIALS, 2016, 28 (08) : 2776 - 2785
  • [38] Strained van der Waals Metallic Magnet for Photomagnetic Modulation and Spin Photodiode Application
    Hu, Liang
    Liu, Fuhao
    Quan, Qinglin
    Lu, Chenxi
    Yu, Senjiang
    Li, Lingwei
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (49)
  • [39] Gradient-Strained Van Der Waals Heterojunctions for High-Efficient Photodetectors
    Zeng, Haoran
    Yu, Huihui
    Liu, Baishan
    Lu, Shucao
    Wei, Xiaofu
    Gao, Li
    Hong, Mengyu
    Zhang, Xiankun
    Zhang, Zheng
    Zhang, Yue
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (29)
  • [40] Strained Bubbles in van der Waals Heterostructures as Local Emitters of Photoluminescence with Adjustable Wavelength
    Tyurnina, Anastasia V.
    Bandurin, Denis A.
    Khestanova, Ekaterina
    Kravets, Vasyl G.
    Koperski, Maciej
    Guinea, Francisco
    Grigorenko, Alexander N.
    Geim, Andre K.
    Grigorieva, Irina V.
    ACS PHOTONICS, 2019, 6 (02): : 516 - +