An improved machine learning-based prediction framework for early detection of events in heart failure patients using mHealth

被引:3
|
作者
Kumar, Deepak [1 ]
Balraj, Keerthiveena [2 ]
Seth, Sandeep [3 ]
Vashista, Shivani [3 ]
Ramteke, Manojkumar [1 ,2 ]
Rathore, Anurag S. [1 ,2 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, New Delhi 110016, India
[2] Indian Inst Technol Delhi, Sch Artificial Intelligence, New Delhi 110016, India
[3] All India Inst Med Sci, New Delhi, Delhi, India
关键词
Heart failure analysis; Data mining; Class imbalance; Feature extraction; Classification; CLASSIFICATION; SELECTION; OUTCOMES;
D O I
10.1007/s12553-024-00832-z
中图分类号
R-058 [];
学科分类号
摘要
PurposeAcute decompensated heart failure (ADHF) is the most prevalent cause of acute respiratory distress worldwide, accounting for the majority of new cases and associated fatalities according to global statistics, making it a serious public health issue at present. The prognosis and probability of survival can be greatly enhanced by an early diagnosis of ADHF since it encourages patients to receive prompt clinical care. Over the past decade, there have been notable advancements in the use of artificial intelligence to interpret cardiovascular data from echocardiograms, and cardiac magnetic resonance imaging to ascertain hazard manifestations or future risks of cardiovascular disorders.MethodsIn this paper, a model is devised to forecast events in outpatients with heart failure. This analysis utilized ten classification models to estimate the patient's prognosis. The order of the importance of the features is determined based on the recursive feature elimination technique by using all of the aforementioned approaches as a base model. The top five features such as gender, diabetes mellitus, systolic blood pressure, sodium, and heart rate were selected from the average ranking of the classifier.ResultsThe experimental results demonstrate that the Gaussian Naive Bayes classifier is superior to other models on an average performance basis, whereas K-Nearest Neighbor provided the best results over other classifiers with precision, recall, and F1 scores of 0.98, 0.91, and 0.94, respectively.ConclusionFinally, a web-based mHealth application is built to estimate the probability of heart failure depending on the accuracy level.
引用
收藏
页码:495 / 512
页数:18
相关论文
共 50 条
  • [41] Machine learning-based framework for saliency detection in distorted images
    Yuzhen Niu
    Lening Lin
    Yuzhong Chen
    Lingling Ke
    Multimedia Tools and Applications, 2017, 76 : 26329 - 26353
  • [42] Phenomapping of patients with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis
    Segar, Matthew W.
    Patel, Kershaw V.
    Ayers, Colby
    Basit, Mujeeb
    Tang, W. H. Wilson
    Willett, Duwayne
    Berry, Jarett
    Grodin, Justin L.
    Pandey, Ambarish
    EUROPEAN JOURNAL OF HEART FAILURE, 2020, 22 (01) : 148 - 158
  • [43] Advanced Data Framework for Sleep Medicine Applications: Machine Learning-Based Detection of Sleep Apnea Events
    Zovko, Kristina
    Sadowski, Yann
    Perkovic, Toni
    Solic, Petar
    Dodig, Ivana Pavlinac
    Pecotic, Renata
    Dogas, Zoran
    APPLIED SCIENCES-BASEL, 2025, 15 (01):
  • [44] Machine learning-based mortality prediction in hip fracture patients using biomarkers
    Asrian, George
    Suri, Abhinav
    Rajapakse, Chamith
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2024, 42 (02) : 395 - 403
  • [45] Machine learning-based prediction of diabetic patients using blood routine data
    Li, Honghao
    Su, Dongqing
    Zhang, Xinpeng
    He, Yuanyuan
    Luo, Xu
    Xiong, Yuqiang
    Zou, Min
    Wei, Huiyan
    Wen, Shaoran
    Xi, Qilemuge
    Zuo, Yongchun
    Yang, Lei
    METHODS, 2024, 229 : 156 - 162
  • [46] Preoperative prediction for early recurrence of hepatocellular carcinoma using machine learning-based radiomics
    Mao, Bing
    Ren, Yajun
    Yu, Xuan
    Liang, Xinliang
    Ding, Xiangming
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [47] A Machine Learning-Based Framework for the Prediction of Cervical Cancer Risk in Women
    Kaushik, Keshav
    Bhardwaj, Akashdeep
    Bharany, Salil
    Alsharabi, Naif
    Rehman, Ateeq Ur
    Eldin, Elsayed Tag
    Ghamry, Nivin A.
    SUSTAINABILITY, 2022, 14 (19)
  • [48] Improving risk prediction in heart failure using machine learning
    Adler, Eric D.
    Voors, Adriaan A.
    Klein, Liviu
    Macheret, Fima
    Braun, Oscar O.
    Urey, Marcus A.
    Zhu, Wenhong
    Sama, Iziah
    Tadel, Matevz
    Campagnari, Claudio
    Greenberg, Barry
    Yagil, Avi
    EUROPEAN JOURNAL OF HEART FAILURE, 2020, 22 (01) : 139 - 147
  • [49] Prediction of Heart Failure by using Machine Learning and Feature Selection
    Aslam, Muhammad Haseeb
    Hussain, Syed Fawad
    2022 17TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES (ICET'22), 2022, : 160 - 165
  • [50] Machine learning-based risk prediction of mild cognitive impairment in patients with chronic heart failure: A model development and validation study
    Yang, Jin
    Xie, Yan
    Wang, Tianyi
    Pu, You
    Ye, Ting
    Huang, Yunman
    Song, Baomei
    Cheng, Fengqin
    Yang, Zheng
    Zhang, Xianqin
    GERIATRIC NURSING, 2025, 62 : 145 - 156