A Blow-Up Criterion for 3D Compressible Isentropic Magnetohydrodynamic Equations with Vacuum

被引:0
|
作者
Wang, Shujuan [1 ]
Ren, Jialin [1 ]
Su, Rijian [2 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R China
[2] Zhengzhou Univ Light Ind, Coll Comp & Commun Engn, Zhengzhou 450002, Peoples R China
基金
中国国家自然科学基金;
关键词
compressible magnetohydrodynamic equations; strong solution; blow up; vacuum; WEAK SOLUTIONS; REGULARITY CRITERIA; MHD EQUATIONS;
D O I
10.3390/math12050687
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate a blow-up criterion for compressible magnetohydrodynamic equations. It is shown that if density and velocity satisfy (parallel to rho parallel to(infinity)(L)(0,T;L-infinity) + parallel to u parallel to(C)([0,T];L-3) < infinity), then the strong solutions to isentropic magnetohydrodynamic equations can exist globally over [0,T]. Notably, our analysis accommodates the presence of an initial vacuum.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Blow-Up Criterion of Weak Solutions for the 3D Boussinesq Equations
    Dai, Zhaohui
    Wang, Xiaosong
    Zhang, Lingrui
    Hou, Wei
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [32] On the blow-up criterion of 3D Navier-Stokes equations
    Benameur, Jamel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (02) : 719 - 727
  • [33] Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum
    Wen, Huanyao
    Zhu, Changjiang
    ADVANCES IN MATHEMATICS, 2013, 248 : 534 - 572
  • [34] A blow-up criterion for 3D Boussinesq equations in Besov spaces
    Qiu, Hua
    Du, Yi
    Yao, Zheng'an
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (03) : 806 - 815
  • [35] One new blow-up criterion for the two-dimensional full compressible magnetohydrodynamic equations
    Lu, Li
    AIMS MATHEMATICS, 2023, 8 (07): : 15876 - 15891
  • [36] Blow-Up for the Compressible Isentropic Navier-Stokes-Poisson Equations
    Dong, Jianwei
    Zhu, Junhui
    Wang, Yanping
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (01) : 9 - 19
  • [37] Blow-Up for the Compressible Isentropic Navier-Stokes-Poisson Equations
    Jianwei Dong
    Junhui Zhu
    Yanping Wang
    Czechoslovak Mathematical Journal, 2020, 70 : 9 - 19
  • [38] A blow-up criterion for 3D compressible viscoelastic flow with large initial data
    Liu, Shengquan
    Zhao, Junning
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) : 2416 - 2425
  • [39] LOCAL EXISTENCE AND BLOW-UP CRITERION OF 3D IDEAL MAGNETOHYDRODYNAMICS EQUATIONS
    Kim, Jae-Myoung
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (06) : 1759 - 1766
  • [40] LOCAL EXISTENCE AND BLOW-UP CRITERION OF 3D IDEAL MAGNETOHYDRODYNAMICS EQUATIONS
    Jae-Myoung KIM
    Acta Mathematica Scientia(English Series), 2018, 38 (06) : 1759 - 1766