Robust Ferrimagnetism in Quasi-Freestanding Graphene

被引:2
|
作者
Rybkin, A. G. [1 ]
Tarasov, A. V. [1 ]
Gogina, A. A. [1 ]
Eryzhenkov, A. V. [1 ]
Rybkina, A. A. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg 198504, Russia
基金
俄罗斯科学基金会;
关键词
D O I
10.1134/S0021364023600866
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The influence of the size of dislocation loops on sublattice ferrimagnetism in graphene is studied. It is shown that graphene and the underlying gold layer with Au/Co dislocation loops of various sizes are characterized by ferrimagnetic ordering within atomic layers. Additional gold adatoms under graphene enhance the induced Rashba spin-orbit coupling in graphene but do not destroy the ferrimagnetic order in graphene. Since gold clusters can remain during the intercalation of gold on the surface of graphene and under graphene, the number and size of clusters after intercalation can be controlled to enhance the induced Rashba interaction and to obtain a topological phase in graphene.
引用
收藏
页码:624 / 629
页数:6
相关论文
共 50 条
  • [41] Electronic Structure of Quasi-Freestanding WS2/MoS2 Heterostructures
    Pielic, Borna
    Novko, Dino
    Rakic, Iva Srut
    Cai, Jiaqi
    Petrovic, Marin
    Ohmann, Robin
    Vujicic, Natasa
    Basletic, Mario
    Busse, Carsten
    Kralj, Marko
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (42) : 50552 - 50563
  • [42] Dielectric function of epitaxial quasi-freestanding monolayer graphene on Si-face 6H-SiC in a broad spectral range
    Tikuisis, Kristupas Kazimieras
    Dubroka, Adam
    Uhlirova, Klara
    Speck, Florian
    Seyller, Thomas
    Losurdo, Maria
    Orlita, Milan
    Veis, Martin
    PHYSICAL REVIEW MATERIALS, 2023, 7 (04)
  • [43] Quasi-freestanding, striped WS2 monolayer with an invariable band gap on Au(001)
    Hong, Min
    Zhou, Xiebo
    Shi, Jianping
    Qi, Yue
    Zhang, Zhepeng
    Fang, Qiyi
    Guo, Yaguang
    Sun, Yajuan
    Liu, Zhongfan
    Li, Yuanchang
    Wang, Qian
    Zhang, Yanfeng
    NANO RESEARCH, 2017, 10 (11) : 3875 - 3884
  • [44] Quasi-freestanding, striped WS2 monolayer with an invariable band gap on Au(001)
    Min Hong
    Xiebo Zhou
    Jianping Shi
    Yue Qi
    Zhepeng Zhang
    Qiyi Fang
    Yaguang Guo
    Yajuan Sun
    Zhongfan Liu
    Yuanchang Li
    Qian Wang
    Yanfeng Zhang
    Nano Research, 2017, 10 : 3875 - 3884
  • [45] Quasi-Freestanding Graphene on SiC(0001) by Ar-Mediated Intercalation of Antimony: A Route Toward Intercalation of High-Vapor-Pressure Elements
    Wolff, Susanne
    Roscher, Sarah
    Timmermann, Felix
    Daniel, Marcus V.
    Speck, Florian
    Wanke, Martina
    Albrecht, Manfred
    Seyller, Thomas
    ANNALEN DER PHYSIK, 2019, 531 (11)
  • [46] Real-time ultra-sensitive detection of SARS-CoV-2 by quasi-freestanding epitaxial graphene-based biosensor
    Kim, Soaram
    Ryu, Heeju
    Tai, Sheldon
    Pedowitz, Michael
    Rzasa, John Robertson
    Pennachio, Daniel J.
    Hajzus, Jenifer R.
    Milton, Donald K.
    Myers-Ward, Rachael
    Daniels, Kevin M.
    BIOSENSORS & BIOELECTRONICS, 2022, 197
  • [47] Structures of quasi-freestanding ultra-thin silicon films deposited on chemically inert surfaces
    Baba, Y.
    Shimoyama, I.
    Hirao, N.
    Sekiguchi, T.
    CHEMICAL PHYSICS, 2014, 444 : 1 - 6
  • [48] Ultra-low-power photodetector based on a high-photoresponse, plasmonic-effect-induced gateless quasi-freestanding graphene device
    Khadka, I. B.
    Alluri, N. R.
    Alsardia, M. M.
    Raj, N. P. M. Joseph
    Prasanna, A. P. S.
    Ul Haq, Bakhtiar
    Kim, S. J.
    Kim, Se-Hun
    APPLIED SURFACE SCIENCE, 2023, 610
  • [49] Ab initio study of the relationship between spontaneous polarization and p-type doping in quasi-freestanding graphene on H-passivated SiC surfaces
    Slawinska, J.
    Aramberri, H.
    Munoz, M. C.
    Cerda, J. I.
    CARBON, 2015, 93 : 88 - 104
  • [50] Comparative Study of Conventional and Quasi-Freestanding Epitaxial Graphenes Grown on 4H-SiC Substrate
    S. P. Lebedev
    I. A. Eliseyev
    V. N. Panteleev
    P. A. Dementev
    V. V. Shnitov
    M. K. Rabchinskii
    D. A. Smirnov
    A. V. Zubov
    A. A. Lebedev
    Semiconductors, 2020, 54 : 1657 - 1660