Bayesian Semiparametric Local Clustering of Multiple Time Series Data

被引:0
|
作者
Fan, Jingjing [1 ]
Sarkar, Abhra [1 ]
机构
[1] Univ Texas Austin, Dept Stat & Data Sci, Welch 5-216,105 East 24th St D9800, Austin, TX 78705 USA
基金
美国国家科学基金会;
关键词
Change point detection; Hidden Markov model; Local clustering; Time series; MODELS;
D O I
10.1080/00401706.2023.2288324
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In multiple time series data, clustering the component profiles can identify meaningful latent groups while also detecting interesting change points in their trajectories. Conventional time series clustering methods, however, suffer the drawback of requiring the co-clustered units to have the same cluster membership throughout the entire time domain. In contrast to these "global" clustering methods, we develop a Bayesian "local" clustering method that allows the functions to flexibly change their cluster memberships over time. We design a Markov chain Monte Carlo algorithm to implement our method. We illustrate the method in several real-world datasets, where time-varying cluster memberships provide meaningful inferences about the underlying processes. These include a public health dataset to showcase the more detailed inference our method can provide over global clustering alternatives, and a temperature dataset to demonstrate our method's utility as a flexible change point detection method. Supplemental materials for this article, including R codes implementing the method, are available online.
引用
收藏
页码:282 / 294
页数:13
相关论文
共 50 条
  • [21] Bayesian semiparametric analysis of recurrent failure time data using copulas
    Meyer, Renate
    Romeo, Jose S.
    BIOMETRICAL JOURNAL, 2015, 57 (06) : 982 - 1001
  • [22] Bayesian Semiparametric Regression Analysis of Multicategorical Time-Space Data
    Ludwig Fahrmeir
    Stefan Lang
    Annals of the Institute of Statistical Mathematics, 2001, 53 : 11 - 30
  • [23] Bayesian semiparametric regression analysis of multicategorical time-space data
    Fahrmeir, L
    Lang, S
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2001, 53 (01) : 11 - 30
  • [24] Bayesian Spectral Modeling for Multiple Time Series
    Cadonna, Annalisa
    Kottas, Athanasios
    Prado, Raquel
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (528) : 1838 - 1853
  • [25] Clustering Multiple Time Series with Structural Breaks
    Wang, Yongning
    Tsay, Ruey S.
    JOURNAL OF TIME SERIES ANALYSIS, 2019, 40 (02) : 182 - 202
  • [26] CLUSTERING AND FORECASTING MULTIPLE FUNCTIONAL TIME SERIES
    Tang, Chen
    Shang, Han Lin
    Yang, Yanrong
    ANNALS OF APPLIED STATISTICS, 2022, 16 (04): : 2523 - 2553
  • [27] Semiparametric Bayesian networks for continuous data
    Boukabour, Seloua
    Masmoudi, Afif
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (24) : 5974 - 5996
  • [28] Semiparametric Bayesian analysis of survival data
    Sinha, D
    Dey, DK
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (439) : 1195 - 1212
  • [29] A Semiparametric Bayesian Approach for Analyzing Longitudinal Data from Multiple Related Groups
    Das, Kiranmoy
    Afriyie, Prince
    Spirko, Lauren
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2015, 11 (02): : 273 - 284
  • [30] A semiparametric method for clustering mixed data
    Foss, Alex
    Markatou, Marianthi
    Ray, Bonnie
    Heching, Aliza
    MACHINE LEARNING, 2016, 105 (03) : 419 - 458