The conjugacy diameters of non-abelian finite p-groups with cyclic maximal subgroups

被引:1
|
作者
Aseeri, Fawaz [1 ]
Kaspczyk, Julian [2 ]
机构
[1] Umm Al Qura Univ, Fac Sci, Math Dept, Mecca 21955, Saudi Arabia
[2] Tech Univ Dresden, Inst Algebra, Fak Math, D-01069 Dresden, Germany
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 05期
关键词
semidihedral group; quaternion group; modular p-groups; normally generating subsets; word norm; conjugacy diameter; COMMUTING GRAPHS;
D O I
10.3934/math.2024524
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a group. A subset S of G is said to normally generate G if G is the normal closure of S in G. In this case, any element of G can be written as a product of conjugates of elements of S and their inverses. If g is an element of G and S is a normally generating subset of G, then we write kgkS for the length of a shortest word in ConjG(S +/- 1) := {h-1sh|h is an element of G, s is an element of S ors-1 is an element of S } needed to express g. For any normally generating subset S of G, we write kGkS = sup{kgkS | g is an element of G}. Moreover, we write Delta(G) for the supremum of all kGkS, where S is a finite normally generating subset of G, and we call Delta(G) the conjugacy diameter of G. In this paper, we derive the conjugacy diameters of the semidihedral 2 -groups, the generalized quaternion groups and the modular p -groups. This is a natural step after the determination of the conjugacy diameters of dihedral groups.
引用
收藏
页码:10734 / 10755
页数:22
相关论文
共 50 条
  • [41] GROUPS WITH NON-ABELIAN SUBGROUPS IN THE FINITE INDEX
    KURDACHENKO, LA
    PYLAEV, VV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1986, (07): : 14 - 15
  • [42] FINITE GROUPS WITH FEW NON-ABELIAN SUBGROUPS
    Meng, Wei
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (03) : 909 - 915
  • [43] Finite p-groups with a minimal non-abelian subgroup of index p (III)
    HaiPeng Qu
    MingYao Xu
    LiJian An
    Science China Mathematics, 2015, 58 : 763 - 780
  • [44] Commutativity Pattern of Finite Non-Abelian p-Groups Determine Their Orders
    Abdollahi, A.
    Akbari, S.
    Dorbidi, H.
    Shahverdi, H.
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (02) : 451 - 461
  • [45] Categorizing finite p-groups by the order of their non-abelian tensor squares
    Jafari, S. Hadi
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (05)
  • [46] Finite p-groups with a minimal non-abelian subgroup of index p (III)
    Qu HaiPeng
    Xu MingYao
    An LiJian
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (04) : 763 - 780
  • [47] Finite p-groups with a minimal non-abelian subgroup of index p (II)
    An LiJian
    Li Lili
    Qu HaiPeng
    Zhang QinHai
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (04) : 737 - 753
  • [48] Finite p-groups with a minimal non-abelian subgroup of index p (II)
    LiJian An
    LiLi Li
    HaiPeng Qu
    QinHai Zhang
    Science China Mathematics, 2014, 57 : 737 - 753
  • [49] Finite p-groups with a minimal non-abelian subgroup of index p (I)
    Qu, Haipeng
    Yang, Sushan
    Xu, Mingyao
    An, Lijian
    JOURNAL OF ALGEBRA, 2012, 358 : 178 - 188
  • [50] Finite p-groups with a minimal non-abelian subgroup of index p (V)
    Qu, Haipeng
    Zhao, Liping
    Gao, Jin
    An, Lijian
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (07)