A stabilized finite element method on nonaffine grids for time-harmonic Maxwell's equations

被引:1
|
作者
Du, Zhijie [1 ]
Duan, Huoyuan [2 ]
机构
[1] Wuhan Univ Technol, Sch Nat Sci, Wuhan 430070, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
Maxwell's equations; Finite element method; Grad-div stabilization; Uniform convergence; Edge element on nonaffine grid; ELECTROMAGNETIC-FIELDS; EDGE ELEMENTS; QUADRILATERALS; H(DIV); APPROXIMATION; SINGULARITIES; BOUNDARY;
D O I
10.1007/s10543-023-00988-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A stabilized mixed finite element method is proposed for solving the time-harmonic Maxwell's equations, with the divergence constraint imposed by the multiplier in a weak sense. By a grad-div stabilization, for some lowest-order edge elements on nonaffine quadrilateral, hexahedral and prismatic grids, we prove a type of uniform convergence for the zero-frequency Maxwell's equations, then prove the well-posedness and the convergence for the time-harmonic Maxwell's equations. Numerical results confirm the theoretical results.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Adjoint variable method for time-harmonic Maxwell equations
    Durand, Stephane
    Cimrak, Ivan
    Sergeant, Peter
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2009, 28 (05) : 1202 - 1215
  • [22] A nonconforming mixed method for the time-harmonic Maxwell equations
    Douglas, J
    Santos, JE
    Sheen, D
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 792 - 796
  • [23] Time-Harmonic Maxwell’s Equations in Periodic Waveguides
    A. Kirsch
    B. Schweizer
    Archive for Rational Mechanics and Analysis, 2025, 249 (3)
  • [24] Sparsifying preconditioner for the time-harmonic Maxwell's equations
    Liu, Fei
    Ying, Lexing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 913 - 923
  • [25] COMPUTATIONAL HOMOGENIZATION OF TIME-HARMONIC MAXWELL'S EQUATIONS
    Henning, Patrick
    Persson, Anna
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (03): : B581 - B607
  • [26] Convergence of Stabilized P1 Finite Element Scheme for Time Harmonic Maxwell's Equations
    Asadzadeh, M.
    Beilina, Larisa
    MATHEMATICAL AND NUMERICAL APPROACHES FOR MULTI-WAVE INVERSE PROBLEMS, CIRM, 2020, 328 : 33 - 43
  • [27] Block Preconditioning Strategies for High Order Finite Element Discretization of the Time-Harmonic Maxwell Equations
    Bollhoefer, Matthias
    Lanteri, Stephane
    SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING (SCEE 2010), 2012, 16 : 25 - 33
  • [28] New discretization schemes for time-harmonic Maxwell equations by weak Galerkin finite element methods
    Wang, Chunmei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 341 : 127 - 143
  • [29] Deep Fourier Residual method for solving time-harmonic Maxwell's equations
    Taylor, Jamie M.
    Bastidas, Manuela
    Pardo, David
    Muga, Ignacio
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 523
  • [30] A Source Transfer Domain Decomposition Method for Time-Harmonic Maxwell's Equations
    Cui, Tao
    Wang, Ziming
    Xiang, Xueshuang
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (02)