Selective knowledge sharing for privacy-preserving federated distillation without a good teacher

被引:13
|
作者
Shao, Jiawei [1 ]
Wu, Fangzhao [2 ]
Zhang, Jun [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
[2] Microsoft Res Asia, Beijing, Peoples R China
关键词
D O I
10.1038/s41467-023-44383-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
While federated learning (FL) is promising for efficient collaborative learning without revealing local data, it remains vulnerable to white-box privacy attacks, suffers from high communication overhead, and struggles to adapt to heterogeneous models. Federated distillation (FD) emerges as an alternative paradigm to tackle these challenges, which transfers knowledge among clients instead of model parameters. Nevertheless, challenges arise due to variations in local data distributions and the absence of a well-trained teacher model, which leads to misleading and ambiguous knowledge sharing that significantly degrades model performance. To address these issues, this paper proposes a selective knowledge sharing mechanism for FD, termed Selective-FD, to identify accurate and precise knowledge from local and ensemble predictions, respectively. Empirical studies, backed by theoretical insights, demonstrate that our approach enhances the generalization capabilities of the FD framework and consistently outperforms baseline methods. We anticipate our study to enable a privacy-preserving, communication-efficient, and heterogeneity-adaptive federated training framework. While federated learning is promising for efficient collaborative learning without revealing local data, it remains vulnerable to white-box privacy attacks, suffers from high communication overhead, and struggles to adapt to heterogeneous models. Here, the authors show a federated distillation method to tackle these challenges, which leverages the strengths of knowledge distillation in a federated learning setting.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Multi-Level ACE-based IoT Knowledge Sharing for Personalized Privacy-Preserving Federated Learning
    Wang, Jing
    Lin, Xi
    Wu, Jun
    Mao, Qinghua
    Pei, Bei
    Li, Jianhua
    Guo, Suchang
    Zhang, Baitao
    2023 19TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN 2023, 2023, : 843 - 848
  • [32] Communication-Efficient and Privacy-Preserving Federated Learning via Joint Knowledge Distillation and Differential Privacy in Bandwidth-Constrained Networks
    Gad, Gad
    Gad, Eyad
    Fadlullah, Zubair Md
    Fouda, Mostafa M.
    Kato, Nei
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (11) : 17586 - 17601
  • [33] FedPDD: A Privacy-preserving Double Distillation Framework for Cross-silo Federated Recommendation
    Wan, Sheng
    Gao, Dashan
    Gu, Hanlin
    Hu, Daning
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [34] Preserving Privacy in Federated Learning with Ensemble Cross-Domain Knowledge Distillation
    Gong, Xuan
    Sharma, Abhishek
    Karanam, Srikrishna
    Wu, Ziyan
    Chen, Terrence
    Doermann, David
    Innanje, Arun
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 11891 - 11899
  • [35] Privacy-Preserving and Reliable Decentralized Federated Learning
    Gao, Yuanyuan
    Zhang, Lei
    Wang, Lulu
    Choo, Kim-Kwang Raymond
    Zhang, Rui
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (04) : 2879 - 2891
  • [36] Privacy-preserving federated learning on lattice quantization
    Zhang, Lingjie
    Zhang, Hai
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (06)
  • [37] Privacy-Preserving Federated Brain Tumour Segmentation
    Li, Wenqi
    Milletari, Fausto
    Xu, Daguang
    Rieke, Nicola
    Hancox, Jonny
    Zhu, Wentao
    Baust, Maximilian
    Cheng, Yan
    Ourselin, Sebastien
    Cardoso, M. Jorge
    Feng, Andrew
    MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2019), 2019, 11861 : 133 - 141
  • [38] Privacy-preserving frequent pattern sharing
    Wang, Zhihui
    Wang, Wei
    Shi, Baile
    Boey, S. H.
    ADVANCES IN DATABASES: CONCEPTS, SYSTEMS AND APPLICATIONS, 2007, 4443 : 225 - +
  • [39] Privacy-Preserving Federated Singular Value Decomposition
    Liu, Bowen
    Pejo, Balazs
    Tang, Qiang
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [40] Privacy-preserving Heterogeneous Federated Transfer Learning
    Gao, Dashan
    Liu, Yang
    Huang, Anbu
    Ju, Ce
    Yu, Han
    Yang, Qiang
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2552 - 2559