Exploring the potential of Radiomics in identification and treatment of lung cancer: A systematic evaluation

被引:0
|
作者
Balekai, Raviteja [1 ]
Holi, Mallikarjun S. [2 ]
机构
[1] Affiliated Visvesvaraya Technol Univ, G M Inst Technol, Dept ECE, Davangere 590018, Karnataka, India
[2] Visvesvaraya Technol Univ, A Constituent Coll, Univ BDT Coll Engn, Dept E&IE, Davangere 590018, Karnataka, India
关键词
Lung cancer; Radiomics; Machine learning; ARTIFICIAL-INTELLIGENCE; HISTOLOGICAL SUBTYPES; IMAGE SEGMENTATION; TEXTURAL FEATURES; PREDICTING EGFR; CT IMAGES; CLASSIFICATION; VARIABILITY; TUMOR; BIOMARKERS;
D O I
10.1007/s11042-023-17922-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lung cancer is one of the most serious and life-threatening diseases in the world. Imaging modalities like computed tomography (CT) and Positron emission tomography (PET) play a crucial role in cancer diagnosis. Radiomics is an emerging field in medical imaging that uses advanced computational algorithms to extract quantitative features from medical images. Machine learning makes radiomics method of cancer diagnosis easier and more efficient by automating the process of feature selection and classification, which can save time and reduce the risk of human error in the diagnosis. It has the potential to revolutionize cancer detection by providing clinicians with valuable insights into tumour biology that can help in clinical decision-making and improve patient care outcomes. In this review paper, we primarily summarize the workflow of radiomics studies in the context of lung cancer and discussed the practical uses of radiomics in lung cancer, such as malignant tumour identification, classification of histologic subtypes, identification of tumour genotypes, and prediction of treatment response. Additionally, the paper addresses the key challenges associated with the clinical transition of radiomics, the limitations of current approaches, and potential future directions in this field.
引用
收藏
页码:60469 / 60492
页数:24
相关论文
共 50 条
  • [21] Radiomics applied to lung cancer: a review
    Scrivener, Madeleine
    de Jong, Evelyn E. C.
    van Timmeren, Janna E.
    Pieters, Thierry
    Ghaye, Benoit
    Geets, Xavier
    TRANSLATIONAL CANCER RESEARCH, 2016, 5 (04) : 398 - 409
  • [22] The future of radiomics in lung cancer Comment
    Thawani, Rajat
    Mustafa, Syed Atif
    LANCET DIGITAL HEALTH, 2020, 2 (03): : E103 - E103
  • [23] Radiomics of pulmonary nodules and lung cancer
    Wilson, Ryan
    Devaraj, Anand
    TRANSLATIONAL LUNG CANCER RESEARCH, 2017, 6 (01) : 86 - 91
  • [24] A framework for systematic clinical evaluation of the MR-linac for treatment of lung cancer patients
    Cobben, D.
    Bainbridge, H.
    Belderbos, J.
    Cheung, P.
    Dubec, M.
    Gomez, D.
    Gore, E.
    Knowles, E.
    Lalezari, F.
    Oelfke, U.
    Sonke, J.
    Tijssen, R.
    Van Es, C.
    Van Herk, M.
    Wetscherek, A.
    McDonald, F.
    Faivre-Finn, C.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S736 - S737
  • [25] Structural and functional radiomics for lung cancer
    Wu, Guangyao
    Jochems, Arthur
    Refaee, Turkey
    Ibrahim, Abdalla
    Yan, Chenggong
    Sanduleanu, Sebastian
    Woodruff, Henry C.
    Lambin, Philippe
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (12) : 3961 - 3974
  • [26] Radiomics in precision medicine for lung cancer
    Constanzo, Julie
    Wei, Lise
    Tseng, Huan-Hsin
    El Naqa, Issam
    TRANSLATIONAL LUNG CANCER RESEARCH, 2017, 6 (06) : 635 - 647
  • [27] Radiomics and deep learning in lung cancer
    Avanzo, Michele
    Stancanello, Joseph
    Pirrone, Giovanni
    Sartor, Giovanna
    STRAHLENTHERAPIE UND ONKOLOGIE, 2020, 196 (10) : 879 - 887
  • [28] Bibliometrics research on radiomics of lung cancer
    Liang, Hongling
    Chen, Zulong
    Wei, Fuwang
    Yang, Ronghao
    Zhou, Huaping
    TRANSLATIONAL CANCER RESEARCH, 2021, 10 (08) : 3757 - 3771
  • [29] Robust Identification of Subtypes in Non-Small Cell Lung Cancer Using Radiomics
    Wang, Ke
    An, Ying
    Li, Ni
    Zhou, Jiancun
    Chen, Xianlai
    TRAITEMENT DU SIGNAL, 2022, 39 (04) : 1399 - 1406
  • [30] Identification of Non-Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics
    Dercle, Laurent
    Fronheiser, Matthew
    Lu, Lin
    Du, Shuyan
    Hayes, Wendy
    Leung, David K.
    Roy, Amit
    Wilkerson, Julia
    Guo, Pingzhen
    Fojo, Antonio T.
    Schwartz, Lawrence H.
    Zhao, Binsheng
    CLINICAL CANCER RESEARCH, 2020, 26 (09) : 2151 - 2162