Exploring the potential of Radiomics in identification and treatment of lung cancer: A systematic evaluation

被引:0
|
作者
Balekai, Raviteja [1 ]
Holi, Mallikarjun S. [2 ]
机构
[1] Affiliated Visvesvaraya Technol Univ, G M Inst Technol, Dept ECE, Davangere 590018, Karnataka, India
[2] Visvesvaraya Technol Univ, A Constituent Coll, Univ BDT Coll Engn, Dept E&IE, Davangere 590018, Karnataka, India
关键词
Lung cancer; Radiomics; Machine learning; ARTIFICIAL-INTELLIGENCE; HISTOLOGICAL SUBTYPES; IMAGE SEGMENTATION; TEXTURAL FEATURES; PREDICTING EGFR; CT IMAGES; CLASSIFICATION; VARIABILITY; TUMOR; BIOMARKERS;
D O I
10.1007/s11042-023-17922-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lung cancer is one of the most serious and life-threatening diseases in the world. Imaging modalities like computed tomography (CT) and Positron emission tomography (PET) play a crucial role in cancer diagnosis. Radiomics is an emerging field in medical imaging that uses advanced computational algorithms to extract quantitative features from medical images. Machine learning makes radiomics method of cancer diagnosis easier and more efficient by automating the process of feature selection and classification, which can save time and reduce the risk of human error in the diagnosis. It has the potential to revolutionize cancer detection by providing clinicians with valuable insights into tumour biology that can help in clinical decision-making and improve patient care outcomes. In this review paper, we primarily summarize the workflow of radiomics studies in the context of lung cancer and discussed the practical uses of radiomics in lung cancer, such as malignant tumour identification, classification of histologic subtypes, identification of tumour genotypes, and prediction of treatment response. Additionally, the paper addresses the key challenges associated with the clinical transition of radiomics, the limitations of current approaches, and potential future directions in this field.
引用
收藏
页码:60469 / 60492
页数:24
相关论文
共 50 条
  • [1] Application of radiomics in diagnosis and treatment of lung cancer
    Pan, Feng
    Feng, Li
    Liu, Baocai
    Hu, Yue
    Wang, Qian
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [2] Radiomics of lung cancer
    Schabath, Matthew
    Balagurunathan, Yoganand
    Dmitry, Goldgof
    LAwrence, Hall
    Samuel, Hawkins
    Stringfield, Olya
    Li, Qian
    Liu, Ying
    Gillies, Robert
    JOURNAL OF THORACIC ONCOLOGY, 2016, 11 (02) : S5 - S6
  • [3] Radiomics for Lung Cancer
    Li, Ruijiang
    Yin, F.
    Li, R.
    Mackin, D.
    MEDICAL PHYSICS, 2017, 44 (06) : 3181 - 3181
  • [4] Identification of potential targets for ovarian cancer treatment by systematic bioinformatics analysis
    Ye, Q.
    Lei, L.
    Aili, A. X.
    EUROPEAN JOURNAL OF GYNAECOLOGICAL ONCOLOGY, 2015, 36 (03) : 283 - 289
  • [5] Radiomics for Predicting Lung Cancer Outcomes Following Radiotherapy: A Systematic Review
    Walls, G. M.
    Osman, S. O. S.
    Brown, K. H.
    Butterworth, K. T.
    Hanna, G. G.
    Hounsell, A. R.
    McGarry, C. K.
    Leijenaar, R. T. H.
    Lambin, P.
    Cole, A. J.
    Jain, S.
    CLINICAL ONCOLOGY, 2022, 34 (03) : E107 - E122
  • [6] PET Radiomics and Response to Immunotherapy in Lung Cancer: A Systematic Review of the Literature
    Evangelista, Laura
    Fiz, Francesco
    Laudicella, Riccardo
    Bianconi, Francesco
    Castello, Angelo
    Guglielmo, Priscilla
    Liberini, Virginia
    Manco, Luigi
    Frantellizzi, Viviana
    Giordano, Alessia
    Urso, Luca
    Panareo, Stefano
    Palumbo, Barbara
    Filippi, Luca
    CANCERS, 2023, 15 (12)
  • [7] Exploring quantitative biomarkers from different tumour volumes for radiomics in lung cancer
    Ramella, S.
    D'Angelillo, R. M.
    Fiore, M.
    Greco, C.
    Ippolito, E.
    D'Amico, N.
    Cordelli, E.
    Sicilia, R.
    Soda, P.
    ANNALS OF ONCOLOGY, 2020, 31 : S809 - S809
  • [8] Radiomics and artificial intelligence for precision medicine in lung cancer treatment
    Chen, Mitchell
    Copley, Susan J.
    Viola, Patrizia
    Lu, Haonan
    Aboagye, Eric O.
    SEMINARS IN CANCER BIOLOGY, 2023, 93 : 97 - 113
  • [9] Radiomics in Lung Metastases: A Systematic Review
    Gabelloni, Michela
    Faggioni, Lorenzo
    Fusco, Roberta
    Simonetti, Igino
    De Muzio, Federica
    Giacobbe, Giuliana
    Borgheresi, Alessandra
    Bruno, Federico
    Cozzi, Diletta
    Grassi, Francesca
    Scaglione, Mariano
    Giovagnoni, Andrea
    Barile, Antonio
    Miele, Vittorio
    Gandolfo, Nicoletta
    Granata, Vincenza
    JOURNAL OF PERSONALIZED MEDICINE, 2023, 13 (02):
  • [10] A systematic evaluation of the therapeutic potential of base editing in cancer prevention and treatment
    Merdler-Rabinowicz, Rona
    Dadush, Ariel
    Patiyal, Sumeet
    Daya, Gulzar
    Ray, Lipika
    Rajagopal, Padma Sheila
    Schaffer, Alejandro A.
    Ruppin, Eytan
    Levanon, Erez Y.
    MOLECULAR CANCER THERAPEUTICS, 2023, 22 (12)