Thermal stability and degradation mechanism of C60 fullerene-based polymers

被引:1
|
作者
Lisa, Gabriela [1 ,3 ]
Cleminte, Cerasela-Ionela [1 ]
Michinobu, Tsuyoshi [2 ]
机构
[1] Gheorghe Asachi Tech Univ Iasi, Cristofor Simionescu Fac Chem Engn & Environm Pro, Dept Chem Engn, Iasi, Romania
[2] Tokyo Inst Technol, Dept Mat Sci & Engn, Tokyo, Japan
[3] Gheorghe Asachi Tech Univ Iasi, Cristofor Simionescu Fac Chem Engn & Environm Pro, Dept Chem Engn, 73 Prof Doctor Docent Dimitrie Mangeron St, Iasi 700050, Romania
关键词
degradation mechanism; fullerene polymers; molecular modeling; thermal stability; POLYSTYRENE; CHEMISTRY;
D O I
10.1002/app.55079
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this paper, the thermal stability and degradation mechanisms of C-60 fullerene-based polymers, obtained by click polymerization between dialkyne-substituted C-60 derivative monomers and 1,3,5-tris(dodecyloxy)benzene-based diazide comonomers, were evaluated. The activation energy of the fullerene polymer C(60)P2 with an ethylene spacer, determined under peak degradation rate conditions, was lower than that of the counter polymer C(60)P1 with a methylene spacer, suggesting lower thermal stability of C(60)P2. The combined technique of thermogravimetric analysis-mass spectroscopy and Fourier transform infrared spectroscopy revealed that the thermal decomposition onset of the analyzed samples is accompanied by C C cleavage of the dodecyloxyside chain groups, followed by the decomposition of the 1,2,3-triazole, dicarboxylate and benzoate moieties. It was found that no thermal decomposition of the fullerene carbon cage occurs up to 670 degrees C. Molecular modeling with Hyperchem software version 7.5 confirmed that C(60)P1 is more thermally stable than C(60)P2.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Kinetic analysis of fullerene C60 thermal degradation via deconvolution method
    Aghili, Siavash
    Panjepour, Masoud
    Losic, Dusan
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2025, 33 (01) : 90 - 102
  • [22] On the Stability of Fullerene C60 in Aqueous Medium
    Gal, Miroslav
    Kolivoska, Viliam
    Kavan, Ladislav
    Bulickova, Jana
    Pospisil, Lubomir
    Hromadova, Magdalena
    Zukalova, Marketa
    Sokolova, Romana
    Kielar, Filip
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2012, 20 (08) : 737 - 742
  • [23] Chain Fullerene C60=C=C60=C=C60: Possible Way to All-Carbon Polymers
    Meng, Huan
    Sun, Baoyun
    Ren, Tongxiang
    Yuan, Hui
    Xing, Gengmei
    Wang, Shukuan
    Chen, Zhenling
    Qu, Li
    Zhang, Chengcheng
    Zhao, Yuliang
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (02) : 1210 - 1213
  • [24] From pure C60 to silicon carbon fullerene-based nanotube:: An ab initio study
    Li, Jiling
    Xia, Yueyuan
    Zhao, Mingwen
    Liu, Xiangdong
    Song, Chen
    Li, Lijuan
    Li, Feng
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (15):
  • [25] Simulation of the thermal fragmentation of fullerene C60
    L. A. Openov
    A. I. Podlivaev
    JETP Letters, 2006, 84 : 68 - 72
  • [26] Simulation of the thermal fragmentation of fullerene C60
    Openov, L. A.
    Podlivaev, A. I.
    JETP LETTERS, 2006, 84 (02) : 68 - 72
  • [27] Controlled grafting of polymers onto fullerene C60
    Mathis, C.
    Vide: Science, Technique et Applications, 2001, 2 4 (300): : 278 - 287
  • [28] Controlled grafting of polymers onto fullerene C60
    Mathis, C
    VIDE-SCIENCE TECHNIQUE ET APPLICATIONS, 2001, 56 (300): : 278 - +
  • [29] Dispersed state of C60 fullerene in some polymers
    Bogdanov, A. A.
    Pozdnyakov, A. O.
    TECHNICAL PHYSICS LETTERS, 2016, 42 (01) : 102 - 104
  • [30] Dispersed state of C60 fullerene in some polymers
    A. A. Bogdanov
    A. O. Pozdnyakov
    Technical Physics Letters, 2016, 42 : 102 - 104