Monocular 3D Object Detection Utilizing Auxiliary Learning With Deformable Convolution

被引:2
|
作者
Chen, Jiun-Han [1 ]
Shieh, Jeng-Lun [1 ]
Haq, Muhamad Amirul [1 ]
Ruan, Shanq-Jang [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Elect & Comp Engn, Taipei 10607, Taiwan
关键词
Three-dimensional displays; Object detection; Solid modeling; Feature extraction; Training; Computational modeling; Task analysis; 3D object detection; monocular camera; driving scene understanding; auxiliary learning; deep learning;
D O I
10.1109/TITS.2023.3319556
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In autonomous driving systems, the monocular 3D object detection algorithm is a crucial component. The safety of autonomous vehicles heavily depends on a well-designed detection system. Therefore, developing a robust and efficient 3D object detection algorithm is a major goal for institutes and researchers. Having a 3D sense is essential in autonomous vehicles and robotics, as it allows the system to understand its surroundings and react accordingly. Compared with stereo-based and Lidar-based methods, monocular 3D Object detection is a challenging task as it only utilizes 2D information to generate complex 3D features, making it low-cost, less computationally intensive, and with great potential. However, the performance of monocular methods is impaired due to the lack of depth information. In this paper, we propose a simple, end-to-end, and effective network for monocular 3D object detection without the use of external training data. Our work is inspired by auxiliary learning, in which we use a robust feature extractor as our backbone and multiple regression heads to learn auxiliary knowledge. These auxiliary regression heads will be discarded after training for improved inference efficiency, allowing us to take advantage of auxiliary learning and enabling the model to learn critical information more conceptually. The proposed method achieves 17.28% and 20.10% for the moderate level of the Car category on the KITTI benchmark test set and validation set, respectively, which outperforms the previous monocular 3D object detection approaches.
引用
收藏
页码:2424 / 2436
页数:13
相关论文
共 50 条
  • [31] Monocular Object Detection Using 3D Geometric Primitives
    Carr, Peter
    Sheikh, Yaser
    Matthews, Iain
    COMPUTER VISION - ECCV 2012, PT I, 2012, 7572 : 864 - 878
  • [32] Dense-JANet for Monocular 3D Object Detection
    Shang, Xiaoqing
    Cheng, Zhiwei
    Shi, Su
    Cheng, Zhuanghao
    Huang, Hongcheng
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [33] Monocular 3D Object Detection from Roadside Infrastructure
    Huang, Delu
    Wen, Feng
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 1672 - 1677
  • [34] MonoCD: Monocular 3D Object Detection with Complementary Depths
    Yan, Longfei
    Yan, Pei
    Xiong, Shengzhou
    Xiang, Xuanyu
    Tan, Yihua
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 10248 - 10257
  • [35] Monocular 3D object detection for an indoor robot environment
    Kim, Jiwon
    Lee, GiJae
    Kim, Jun-Sik
    Kim, Hyunwoo J.
    Kim, KangGeon
    2020 29TH IEEE INTERNATIONAL CONFERENCE ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN), 2020, : 438 - 445
  • [36] A New Monocular 3D Object Detection with Neural Network
    Hong, Weijie
    Liu, Yiguang
    Zheng, Yunan
    Wang, Ying
    Shi, Xuelei
    PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT IV, 2018, 11259 : 174 - 185
  • [37] 3D Visual Object Detection from Monocular Images
    Wang, Qiaosong
    Rasmussen, Christopher
    ADVANCES IN VISUAL COMPUTING, ISVC 2019, PT I, 2020, 11844 : 168 - 180
  • [38] Competition for roadside camera monocular 3D object detection
    Jia, Jinrang
    Shi, Yifeng
    Qu, Yuli
    Wang, Rui
    Xu, Xing
    Zhang, Hai
    NATIONAL SCIENCE REVIEW, 2023, 10 (06)
  • [39] Objects are Different: Flexible Monocular 3D Object Detection
    Zhang, Yunpeng
    Lu, Jiwen
    Zhou, Jie
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3288 - 3297
  • [40] Monocular 3D Object Detection with Depth from Motion
    Wang, Tai
    Pang, Jiangmiao
    Lin, Dahua
    COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 : 386 - 403