Single-electron spin resonance detection by microwave photon counting

被引:36
|
作者
Wang, Z. [1 ,2 ,3 ]
Balembois, L. [1 ]
Rancic, M. [1 ]
Billaud, E. [1 ]
Le Dantec, M. [1 ]
Ferrier, A. [4 ]
Goldner, P. [4 ]
Bertaina, S. [5 ]
Chaneliere, T. [6 ]
Esteve, D. [1 ]
Vion, D. [1 ]
Bertet, P. [1 ]
Flurin, E. [1 ]
机构
[1] Univ Paris Saclay, Quantron Grp, CEA, CNRS,SPEC, Gif Sur Yvette, France
[2] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ, Canada
[3] Univ Sherbrooke, Inst Quant, Sherbrooke, PQ, Canada
[4] PSL Univ, Inst Rech Chim Paris, Chim ParisTech, CNRS, Paris, France
[5] Aix Marseille Univ, Inst Mat Microelect & Nanosci Provence, CNRS, UMR 7334,IM2NP, Marseille, France
[6] Univ Grenoble Alpes, Inst Neel, CNRS, Grenoble INP, Grenoble, France
基金
欧洲研究理事会;
关键词
MAGNETIC-RESONANCE; PARAMAGNETIC-RESONANCE; LATTICE-RELAXATION; READ-OUT; FLUORESCENCE;
D O I
10.1038/s41586-023-06097-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electron spin resonance spectroscopy is the method of choice for characterizing paramagnetic impurities, with applications ranging from chemistry to quantum computing(1,2), but it gives access only to ensemble-averaged quantities owing to its limited signal-to-noise ratio. Single-electron spin sensitivity has, however, been reached using spin-dependent photoluminescence(3-5), transport measurements(6-9) and scanning-probe techniques(10-12). These methods are system-specific or sensitive only in a small detection volume(13,14), so that practical single-spin detection remains an open challenge. Here, we demonstrate single-electron magnetic resonance by spin fluorescence detection(15), using a microwave photon counter at millikelvin temperatures(16). We detect individual paramagnetic erbium ions in a scheelite crystal coupled to a high-quality-factor planar superconducting resonator to enhance their radiative decay rate(17), with a signal-to-noise ratio of 1.9 in one second integration time. The fluorescence signal shows anti-bunching, proving that it comes from individual emitters. Coherence times up to 3 ms are measured, limited by the spin radiative lifetime. The method has the potential to be applied to arbitrary paramagnetic species with long enough non-radiative relaxation times, and allows single-spin detection in a volume as large as the resonator magnetic mode volume (approximately 10 mu m(3) in the present experiment), orders of magnitude larger than other single-spin detection techniques. As such, it may find applications in magnetic resonance and quantum computing.
引用
收藏
页码:276 / +
页数:20
相关论文
共 50 条
  • [21] Bidirectional single-electron counting and the fluctuation theorem
    Utsumi, Y.
    Golubev, D. S.
    Marthaler, M.
    Saito, K.
    Fujisawa, T.
    Schoen, Gerd
    PHYSICAL REVIEW B, 2010, 81 (12)
  • [22] Single-Electron Shuttle Based on Electron Spin
    Kulinich, S. I.
    Gorelik, L. Y.
    Kalinenko, A. N.
    Krive, I. V.
    Shekhter, R. I.
    Park, Y. W.
    Jonson, M.
    PHYSICAL REVIEW LETTERS, 2014, 112 (11)
  • [23] Spin effects in single-electron tunnelling
    Barnas, J.
    Weymann, I.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (42)
  • [24] SINGLE-ELECTRON SPIN LOGICAL GATES
    MOLOTKOV, SN
    NAZIN, SS
    JETP LETTERS, 1995, 62 (03) : 273 - 281
  • [25] Electron paramagnetic resonance spectroscopy of a scheelite crystal using microwave-photon counting
    Billaud, E.
    Balembois, L.
    Travesedo, J.
    Le Dantec, M.
    Rancic, M.
    Albertinale, E.
    Truong, R.
    Bertaina, S.
    Chaneliere, T.
    Goldner, P.
    Esteve, D.
    Vion, D.
    Flurin, E.
    Bertet, P.
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [26] Cotunneling at resonance for the single-electron transistor
    Konig, J
    Schoeller, H
    Schon, G
    PHYSICAL REVIEW LETTERS, 1997, 78 (23) : 4482 - 4485
  • [27] A scheme for electrical detection of single electron spin resonance
    Martin, I
    Mozyrsky, D
    Jiang, HW
    NANOTECH 2003, VOL 3, 2003, : 90 - 93
  • [28] Balanced Detection in Single Photon Counting
    Lu, Zhiwen
    Sun, Wenlu
    Campbell, Joe
    Jiang, Xudong
    Itzler, Mark A.
    ADVANCED PHOTON COUNTING TECHNIQUES VII, 2013, 8727
  • [29] Single-electron counting statistics with a finite frequency bandwidth
    Watase, Narii
    Hashisaka, Masayuki
    Muraki, Koji
    Fujisawa, Toshimasa
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2014, 53 (04)
  • [30] Microwave response of a magnetic single-electron transistor
    Bender, Scott A.
    Tserkovnyak, Yaroslav
    Brataas, Arne
    PHYSICAL REVIEW B, 2010, 82 (18):