Plasma Emission, Wave Speeds, and Temperatures of Laser-Supported Plasmas in Air

被引:3
|
作者
Jo, Seunghyun [1 ,3 ]
Gore, Jay P. [2 ,4 ,5 ]
机构
[1] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mech Engn, Engn, W Lafayette, IN 47907 USA
[3] Georgia Inst Technol, Daniel Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA
[4] Sch Aeronaut & Astronaut, Atlanta, GA USA
[5] Davidson Sch Chem Engn, Atlanta, GA USA
关键词
Einstein Coefficients; Thermodynamic Properties; Spectrometers; Laser Induced Breakdown Spectroscopy; Laser induced plasma; Laser supported radiation; Laser supported detonation; Plasma temperature; PROPAGATION VELOCITY; ENERGY-ABSORPTION; SPARK-IGNITION; DIAGNOSTICS; EVOLUTION; BREAKDOWN;
D O I
10.2514/1.J062334
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A study of the generation and subsequent expansion of plasmas using a single beam (532 nm) from the second harmonic generator of a Q-switched Nd:YAG laser is described. The plasmas in air are studied using an intensified charge-coupled device camera over periods of 1000 ns following the laser pulses. The plasma experimental results are interpreted in terms of wave speeds and plasma temperatures. Energy balance equations are considered to estimate the plasma temperatures and the laser-supported radiation (LSR) and the laser-supported detonation (LSD) wave speeds. Within 1000 ns observation time, the circular spectral images turn elliptical because of plasma expansion toward the laser beam. The plasma expansion increases with increasing laser irradiance. A laser irradiance range of 90-450 GW/cm(2) yields LSR wave speeds between 45 and 170 km/s and LSD wave speeds of 90-130 km/s. The measured wave speeds are compared with the LSR and the LSR wave speed models. The plasma temperatures are between 90,000 and 120,000 K at 15 ns after the laser pulse based on measured emission spectra and are between 640,000 and 760,000 K at 3 ns based on the LSR model.
引用
收藏
页码:1954 / 1963
页数:10
相关论文
共 50 条
  • [41] Plasma frequency and harmonic emission from fs-laser plasmas
    Teubner, U
    Gibbon, P
    Altenbernd, D
    Oberschmidt, D
    Förster, E
    Mysyrowicz, A
    Audebert, P
    Geindre, JP
    Gauthier, JC
    LASER AND PARTICLE BEAMS, 1999, 17 (04) : 613 - 619
  • [42] Plasma processes and emission spectra in laser induced plasmas: A point of view
    De Giacomo, A.
    Dell'Aglio, M.
    De Pascale, O.
    Gaudiuso, R.
    Palleschi, V.
    Parigger, C.
    Woods, A.
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2014, 100 : 180 - 188
  • [43] Numerical analysis on non-equilibrium mechanism of Laser-Supported Detonation wave using Multiply-charged ionization
    Shiraishi, Hiroyuki
    Beamed Energy Propulsion, 2006, 830 : 142 - 150
  • [44] Enhanced terahertz wave emission from air-plasma tailored by abruptly autofocusing laser beams
    Liu, Kang
    Koulouklidis, Anastasios D.
    Papazoglou, Dimitrios G.
    Tzortzakis, Stelios
    Zhang, Xi-Cheng
    OPTICA, 2016, 3 (06): : 605 - 608
  • [45] Features of VUV emission from plasmas generated by nanosecond laser pulses in air
    Khater, Mohamed A.
    OPTICS AND LASER TECHNOLOGY, 2013, 54 : 315 - 320
  • [46] X-RAY TEMPERATURES FROM LASER-INDUCED BREAKDOWN PLASMAS IN AIR
    DAIBER, JW
    THOMPSON, HM
    JOURNAL OF APPLIED PHYSICS, 1970, 41 (05) : 2043 - +
  • [47] Plasma line emission from short pulse laser interactions with dense plasmas
    Boyd, TJM
    Ondarza-Rovira, R
    PHYSICAL REVIEW LETTERS, 2000, 85 (07) : 1440 - 1443
  • [48] PROPAGATION OF A ND-LASER-SUPPORTED SLOW COMBUSTION WAVE IN THE AIR
    BUFETOV, IA
    PROKHOROV, AM
    FEDOROV, VB
    FOMIN, VK
    KVANTOVAYA ELEKTRONIKA, 1981, 8 (04): : 751 - 759
  • [49] Absorption and emission characteristics of femtosecond laser plasma filaments in the air
    Ilyin, Alexey A.
    Golik, Sergey S.
    Shmirko, Konstantin A.
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2015, 112 : 16 - 22
  • [50] Enhancement of terahertz wave emission from air plasma excited by harmonic three-color laser fields
    Ma, Danni
    Dong, Liquan
    Zhang, Rui
    Zhang, Cunlin
    Zhao, Yuejin
    Zhang, Liangliang
    OPTICS COMMUNICATIONS, 2021, 481