Self-Attention Fully Convolutional DenseNets for Automatic Salt Segmentation

被引:20
|
作者
Saad, Omar M. [1 ]
Chen, Wei [2 ,3 ]
Zhang, Fangxue [4 ]
Yang, Liuqing [5 ]
Zhou, Xu [6 ]
Chen, Yangkang [7 ]
机构
[1] Natl Res Inst Astron & Geophys NRIAG, Seismol Dept, ENSN Lab, Helwan 11421, Egypt
[2] Yangtze Univ, Cooperat Innovat Ctr Unconvent Oil & Gas, Minist Educ & Hubei Prov, Wuhan 430100, Peoples R China
[3] Yangtze Univ, Key Lab Explorat Technol Oil & Gas Resources, Minist Educ, Wuhan 430100, Peoples R China
[4] Zhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang, Hangzhou 310027, Peoples R China
[5] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102200, Peoples R China
[6] Louisiana State Univ, Craft & Hawkins Dept Petr Engn, Baton Rouge, LA 70803 USA
[7] Univ Texas Austin, Bur Econ Geol, University Stn, TX 78713 USA
基金
中国国家自然科学基金;
关键词
Feature extraction; Convolution; Data mining; Image segmentation; Convolutional neural networks; Geology; Training; Deep learning; salt segmentation; seismic interpretation; self-attention;
D O I
10.1109/TNNLS.2022.3175419
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3-D salt segmentation is important for many research topics spanning from exploration geophysics to structural geology. In seismic exploration, 3-D salt segmentation is directly related to the velocity modeling building that affects many processing steps, such as seismic migration and full waveform inversion. Manually picking the salt boundary becomes prohibitively time-consuming when the data size is too large. Here, we develop a highly generalized fully convolutional DenseNet for automatic salt segmentation. A squeeze-and-excitation network is used as a self-attention mechanism for guiding the proposed network to extract the most significant information related to the salt signals and discard the others. The proposed framework is a supervised technique and shows robust performance when applied to a new dataset using transfer learning and a small amount of training data. We test the robustness of the proposed framework on the Kaggle TGS salt segmentation dataset. To demonstrate the generalization ability of the framework, we further apply the trained model to an independent dataset synthesized from the 3-D SEAM model. We apply transfer learning to finely tune the trained model from the TGS dataset using only a small percentage of data from the 3-D SEAM dataset and obtain satisfactory results.
引用
收藏
页码:3415 / 3428
页数:14
相关论文
共 50 条
  • [31] MedSegNet: A Lightweight Convolutional Network Combining Dual Self-Attention and Multi-Scale Attention for Medical Image Segmentation
    Bharati, Subrato
    Ahmad, M. Omair
    Swamy, M. N. S.
    2024 IEEE 67TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, MWSCAS 2024, 2024, : 965 - 969
  • [32] MRSNet: Joint consistent optic disc and cup segmentation based on large kernel residual convolutional attention and self-attention
    Yan, Shiliang
    Pan, Xiaoqin
    Wang, Yinling
    DIGITAL SIGNAL PROCESSING, 2024, 145
  • [33] Fully Convolutional Networks for Automatic Pavement Crack Segmentation
    Escalona, Uriel
    Arce, Fernando
    Zamora, Erik
    Sossa, Humberto
    COMPUTACION Y SISTEMAS, 2019, 23 (02): : 451 - 460
  • [34] AutoCaCoNet: Automatic Cartoon Colorization Network using self-attention GAN, segmentation, and color correction
    Lee, Seungpeel
    Park, Eunil
    2024 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS, WACVW 2024, 2024, : 403 - 411
  • [35] Semantic Segmentation Method of Point Cloud in Automatic Driving Scene Based on Self-attention Mechanism
    Wang D.
    Shang H.
    Cao J.
    Wang T.
    Xia X.
    Han Y.
    Qiche Gongcheng/Automotive Engineering, 2022, 44 (11): : 1656 - 1664
  • [36] Self-attention CNN for retinal layer segmentation in OCT
    Cao, Guogang
    Wu, Yan
    Peng, Zeyu
    Zhou, Zhilin
    Dai, Cuixia
    BIOMEDICAL OPTICS EXPRESS, 2024, 15 (03) : 1605 - 1617
  • [37] Multiple Self-attention Network for Intracranial Vessel Segmentation
    Li, Yang
    Ni, Jiajia
    Elazab, Ahmed
    Wu, Jianhuang
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [38] Self-attention feature fusion network for semantic segmentation
    Zhou, Zhen
    Zhou, Yan
    Wang, Dongli
    Mu, Jinzhen
    Zhou, Haibin
    NEUROCOMPUTING, 2021, 453 : 50 - 59
  • [39] SATS: Self-attention transfer for continual semantic segmentation
    Qiu, Yiqiao
    Shen, Yixing
    Sun, Zhuohao
    Zheng, Yanchong
    Chang, Xiaobin
    Zheng, Weishi
    Wang, Ruixuan
    PATTERN RECOGNITION, 2023, 138
  • [40] Weakly supervised histopathology image segmentation with self-attention
    Li, Kailu
    Qian, Ziniu
    Han, Yingnan
    Chang, Eric I-Chao
    Wei, Bingzheng
    Lai, Maode
    Liao, Jing
    Fan, Yubo
    Xu, Yan
    MEDICAL IMAGE ANALYSIS, 2023, 86