Hot springs are potential sources of diverse arrays of microbes and their thermostable hydrolytic enzymes. Water and sediment samples were collected from three hot springs of Ethiopia and enriched on nutrient and thermus agar media to isolate pure cultures of potential microbes. A total of 252 bacterial isolates were screened and evaluated for the production of amylase, protease, cellulase, and lipase. About 95.23%, 84.12%, 76.58%, and 65.07% of the isolates displayed promising amylase, proteases, cellulase, and lipase activities, respectively. Based on the diameter of the clear zone formed, 45 isolates were further screened and identified to species level using matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry analysis and 16S rRNA gene sequencing. Five of the 45 isolates showed significantly high (P < 0.05) clear zone ratios as compared to others. The identified isolates were categorized under five bacterial species, namely, Bacillus licheniformis, Bacillus cereus, Paenibacillus thiaminolyticus, Paenibacillus dendritiformis, and Brevibacillus borstelensis. The most dominant species (66.7%) was B. licheniformis. It could be concluded that hot springs of Ethiopia are potential sources of thermostable extracellular hydrolytic enzymes for various industrial applications. Further optimization of the growth conditions and evaluation for better productivity of the desired products is recommended before attempting for large-scale production of the hydrolytic enzymes.