An Effective and Lightweight Hybrid Network for Object Detection in Remote Sensing Images

被引:12
|
作者
Yang, Xi [1 ]
Zhang, Sheng [1 ]
Duan, Songsong [1 ]
Yang, Weichao [2 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Xian Inst Space Radio Technol, Xian 710100, Peoples R China
基金
中国国家自然科学基金;
关键词
Efficient and lightweight; hybrid network; object detection; remote sensing images;
D O I
10.1109/TGRS.2023.3339624
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In recent years, general object detection on nature images leverages convolutional neural networks (CNNs) and vision transformers (ViT) to achieve great progress and high accuracy. However, unlike nature scenarios, remote sensing systems usually deploy a large number of edge devices. Therefore, this condition encourages detectors to have lower parameters than high-complexity neural networks. To this end, we propose an effective and lightweight detection framework of hybrid network, which enhances representation learning to balance efficiency and accuracy of model. Specifically, to compensate low precision caused by lightweight neural networks, we design a boundary-aware context (BAC) module and a frequency self-attention refinement (FSAR) module to improve detector performance in a hybrid structure. The BAC module enhances the local features of the object by fusing the spatial context information with the original image, which not only improves the model accuracy but also effectively solves the problem of multiscale objects. To alleviate the interference of complex background, the FSAR module adopts an adaptive technology to filter out redundant information at different frequencies to improve overall detection performance. The comprehensive experiments on remote sensing datasets, i.e., NWPU VHR-10, LEVIR, and RSOD, indicate that the proposed method achieves state-of-the-art performance and balances between model size and accuracy.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [21] Siamese Graph Embedding Network for Object Detection in Remote Sensing Images
    Tian, Shu
    Kang, Lihong
    Xing, Xiangwei
    Li, Zhou
    Zhao, Liang
    Fan, Chunzhuo
    Zhang, Ye
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (04) : 602 - 606
  • [22] Object Detection in Optical Remote Sensing Images Based on Residual Network
    Li, Da
    Gong, Shaoxing
    Liu, Dong
    2020 4TH INTERNATIONAL CONFERENCE ON MACHINE VISION AND INFORMATION TECHNOLOGY (CMVIT 2020), 2020, 1518
  • [23] Foreground Refinement Network for Rotated Object Detection in Remote Sensing Images
    Zhang, Tianyang
    Zhang, Xiangrong
    Zhu, Peng
    Chen, Puhua
    Tang, Xu
    Li, Chen
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [24] Feature Enhancement Network for Object Detection in Optical Remote Sensing Images
    Cheng, Gong
    Lang, Chunbo
    Wu, Maoxiong
    Xie, Xingxing
    Yao, Xiwen
    Han, Junwei
    JOURNAL OF REMOTE SENSING, 2021, 2021
  • [25] Scale Adaptive Proposal Network for Object Detection in Remote Sensing Images
    Zhang, Shuo
    He, Guanghui
    Chen, Hai-Bao
    Jing, Naifeng
    Wang, Qin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (06) : 864 - 868
  • [26] A Hierarchical Context Embedding Network for Object Detection in Remote Sensing Images
    Zhang, Ke
    Wu, Yulin
    Wang, Jingyu
    Wang, Qi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [27] Multistage Enhancement Network for Tiny Object Detection in Remote Sensing Images
    Zhang, Tianyang
    Zhang, Xiangrong
    Zhu, Xiaoqian
    Wang, Guanchun
    Han, Xiao
    Tang, Xu
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 12
  • [28] Deep Hash Assisted Network for Object Detection in Remote Sensing Images
    Wang, Min
    Sun, Zhepei
    Xu, GuangXing
    Ma, Hongbin
    Yang, Shuyuan
    Wang, Wei
    IEEE ACCESS, 2020, 8 : 180370 - 180378
  • [29] ADAPTIVE FEATURE AGGREGATION NETWORK FOR OBJECT DETECTION IN REMOTE SENSING IMAGES
    Sun, Wenliang
    Zhang, Xiangrong
    Zhang, Tianyang
    Zhu, Peng
    Gao, Li
    Tang, Xu
    Liu, Bo
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1635 - 1638
  • [30] Discriminative Feature Pyramid Network For Object Detection In Remote Sensing Images
    Zhu, Xiaoqian
    Zhang, Xiangrong
    Zhang, Tianyang
    Zhu, Peng
    Tang, Xu
    Li, Chen
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,