Controlled Li Alloying by Postsynthesis Electrochemical Treatment of Cu2ZnSn(S, Se)4 Absorbers for Solar Cells

被引:3
|
作者
Moser, Simon [1 ]
Aribia, Abdessalem [1 ]
Scaffidi, Romain [2 ,3 ,4 ,5 ]
Gilshtein, Evgeniia [1 ]
Brammertz, Guy [2 ,3 ,4 ]
Vermang, Bart [2 ,3 ,4 ]
Tiwari, Ayodhya N. [1 ]
Carron, Romain [1 ]
机构
[1] Empa Swiss Fed Labs Mat Sci & Technol, Lab Thin Films & Photovolta, CH-8600 Dubendorf, Switzerland
[2] Hasselt Univ, IMO, B-3590 Diepenbeek, Belgium
[3] imec, IMOMEC, B-3590 Diepenbeek, Belgium
[4] EnergyVille 2, B-3600 Genk, Belgium
[5] UCLouvain, ICTEAM, B-1348 Louvain La Neuve, Belgium
基金
欧盟地平线“2020”;
关键词
thin-film solar cells; kesterite; CZTSSe; doping and alloying; lithium; THIN-FILM; BAND-GAP; SODIUM; SPECTROSCOPY; DISORDER; CU;
D O I
10.1021/acsaem.3c02483
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-alloying of Cu2ZnSn-(S, Se)4 (CZTSSe) absorbers is widely accepted for its beneficial influence on the performance of CZTSSe-based thin film solar cells. Given the degraded morphology characteristic of absorbers synthesized in the presence of excess Li concentrations, it is speculated that Li may be best incorporated into the absorber after synthesis. Here, we report an innovative method to add Li to synthesized CZTSSe by an electrochemical treatment using a liquid electrolyte. Our approach decouples Li addition from absorber synthesis, allowing one to possibly overcome morphology issues associated with high Li concentration. We show that Li is thereby transferred to the absorber and is incorporated into the crystal lattice. The resulting Li concentration in the absorber can be easily controlled by the treatment parameters. Using liquid electrolytes allows a straightforward disassembly of the lithiation setup and hence the fabrication of solar cells after electrochemical treatment. Electrochemically lithiated solar cells reached power conversion efficiencies of up to 9.0%. Further optimization of this innovative method is required to reduce expected interface issues resulting from the electrochemical treatment to demonstrate a gain in the power conversion efficiency of the CZTSSe solar cells. Finally, our results indicate strong lateral Li diffusion, which deserves further investigation. Moreover, the method could be transferred to other material systems, such as Cu-(In, Ga)-Se2 (CIGS), and adapted to treat layers with other alkali elements such as Na.
引用
收藏
页码:12515 / 12525
页数:11
相关论文
共 50 条
  • [21] Surface modification through air annealing Cu2ZnSn(S,Se)4 absorbers
    Larsen, J. K.
    Ren, Y.
    Ross, N.
    Sarhammar, E.
    Li, S. -Y.
    Platzer-Bjorkman, C.
    THIN SOLID FILMS, 2017, 633 : 118 - 121
  • [22] Tailoring Mo(S,Se)2 structure for high efficient Cu2ZnSn(S,Se)4 solar cells
    Gao, Shoushuai
    Zhang, Yi
    Ao, Jianping
    Lin, Shuping
    Zhang, Zhaojing
    Li, Xiuling
    Wang, Donggiao
    Zhou, Zhiqiang
    Sun, Guozhong
    Liu, Fangfang
    Sun, Yun
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 176 : 302 - 309
  • [23] Improvement of conduction band offset and efficiency of Cu2ZnSn(S,Se)4 thin film solar cells by Cd alloying
    Sun, Luanhong
    Shen, Honglie
    Huang, Hulin
    Raza, Adil
    Zhao, Qichen
    Hu, Dongli
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2020, 120
  • [24] Performance improvement of Cu2ZnSn(S,Se)4 solar cells by ultraviolet ozone treatment on precursor films
    Zhao, Jing
    Zhao, Yun
    Tan, Xiaohui
    Liu, Weizhen
    Zhao, Wenning
    Fang, Yikun
    Han, Xiuxun
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 226
  • [25] Impact of annealing treatment before buffer layer deposition on Cu2ZnSn(S, Se)4 solar cells
    Hironiwa, Daisuke
    Sakai, Noriyuki
    Kato, Takuya
    Sugimoto, Hiroki
    Tang, Zeguo
    Chantana, Jakapan
    Minemoto, Takashi
    THIN SOLID FILMS, 2015, 582 : 151 - 153
  • [26] Microstructural characterization of Cu2ZnSn(S,Se)4 solar cells fabricated from nanoparticles
    Zhang, Yiwen
    Suyama, Naoki
    Goto, Masanori
    Kuwana, Jun
    Sugimoto, Kanta
    Satake, Tetsuo
    Kurokawa, Yasuyoshi
    Yin, Ming
    Yamada, Akira
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (08)
  • [27] Analysis of photovoltaic properties of Cu2ZnSn(S,Se)4-based solar cells
    Grenet, Louis (louis.grenet@cea.fr), 1600, Elsevier B.V., Netherlands (126):
  • [28] 11.39% efficiency Cu2ZnSn(S,Se)4 solar cells from scrap brass
    Pan, Yining
    Yan, Chang
    Zhao, Xiangyun
    Chen, Wangxian
    Sun, Kaiwen
    Wu, Qing
    Ding, Liming
    Liu, Fangyang
    SUSMAT, 2022, 2 (02): : 206 - 211
  • [29] Microstructural characterization of Cu2ZnSn(S,Se)4 solar cells fabricated from nanoparticles
    Technical Research Institute, Toppan Printing Co., Ltd., Sugito, Saitama
    345-8508, Japan
    不详
    152-8552, Japan
    Jpn. J. Appl. Phys., 1600, 8
  • [30] Analysis of photovoltaic properties of Cu2ZnSn(S,Se) 4-based solar cells
    Grenet, L. (louis.grenet@cea.fr), 1600, Elsevier B.V., Netherlands (126):