A Sewer Pipeline Defect Detection Method Based on Improved YOLOv5

被引:5
|
作者
Wang, Tong [1 ,2 ,3 ]
Li, Yuhang [1 ,2 ]
Zhai, Yidi [1 ,2 ]
Wang, Weihua [4 ]
Huang, Rongjie [1 ,2 ,3 ]
机构
[1] Zhengzhou Univ Light Ind, Henan Key Lab Intelligent Mfg Mech Equipment, Zhengzhou 450002, Peoples R China
[2] Zhengzhou Univ Light Ind, Coll Mech & Elect Engn, Zhengzhou 450002, Peoples R China
[3] Food Lab Zhongyuan, Luohe 462300, Peoples R China
[4] China Special Equipment Inspect & Res Inst, Beijing 100029, Peoples R China
关键词
detection of sewer defects; improved YOLOv5; involution; GSConv; attention mechanism; knowledge distillation;
D O I
10.3390/pr11082508
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
To address the issues of strong subjectivity, low efficiency, and difficulty in on-site model deployment encountered in existing CCTV defect detection of pipelines, this article proposes an object detection model based on an improved YOLOv5s algorithm. Firstly, involution modules and GSConv simplified models are introduced into the backbone network and feature fusion network, respectively, to enhance the detection accuracy. Secondly, a CBAM attention mechanism is integrated to improve the detection accuracy of overlapping targets in complex backgrounds. Finally, knowledge distillation is performed on the improved model to further enhance its accuracy. Experimental results demonstrate that the improved YOLOv5s achieved an mAP@0.5 of 80.5%, which is a 2.4% increase over the baseline, and reduces the parameter and computation volume by 30.1% and 29.4%, respectively, with a detection speed of 75 FPS. This method offers good detection accuracy and robustness while ensuring real-time detection and can be employed in the on-site detection process of sewer pipeline defects.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Fish detection method based on improved YOLOv5
    Li, Lei
    Shi, Guosheng
    Jiang, Tao
    AQUACULTURE INTERNATIONAL, 2023, 31 (05) : 2513 - 2530
  • [22] Helmet detection method based on improved YOLOv5
    Hou G.
    Chen Q.
    Yang Z.
    Zhang Y.
    Zhang D.
    Li H.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (02): : 329 - 342
  • [23] Fish detection method based on improved YOLOv5
    Lei Li
    Guosheng Shi
    Tao Jiang
    Aquaculture International, 2023, 31 : 2513 - 2530
  • [24] An Improved UAV Detection Method Based on YOLOv5
    Liu, Xinfeng
    Chen, Mengya
    Li, Chenglong
    Tian, Jie
    Zhou, Hao
    Ullah, Inam
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 739 - 750
  • [25] Surface Defect Detection Method of Wooden Spoon Based on Improved YOLOv5 Algorithm
    Tian, Siqing
    Li, Xiao
    Fang, Xiaolin
    Qi, Xiaozhong
    Li, Jichao
    BIORESOURCES, 2023, 18 (04) : 7713 - 7730
  • [26] Pedestrian detection method based on improved YOLOv5
    You, Shangtao
    Gu, Zhengchao
    Zhu, Kai
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [27] GRP-YOLOv5: An Improved Bearing Defect Detection Algorithm Based on YOLOv5
    Zhao, Yue
    Chen, Bolun
    Liu, Bushi
    Yu, Cuiying
    Wang, Ling
    Wang, Shanshan
    SENSORS, 2023, 23 (17)
  • [28] Railway fastener defect detection based on improved YOLOv5 algorithm
    Su, Zhitong
    Han, Kai
    Song, Wei
    Ning, Keqing
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 1923 - 1927
  • [29] Application of improved YOLOV5 in plate defect detection
    Xiong, Chenglong
    Hu, Sanbao
    Fang, Zhigang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022,
  • [30] Lightweight Surface Defect Detection Algorithm Based on Improved YOLOv5
    Yang, Kaijun
    Chen, Tao
    2024 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS TECHNOLOGY AND INTELLIGENT MANUFACTURING, ICMTIM 2024, 2024, : 798 - 802