Arabinoxylan in Water through SANS: Single-Chain Conformation, Chain Overlap, and Clustering

被引:2
|
作者
Petermann, Maike [1 ]
Dianteill, Lucie [1 ]
Zeidi, Amal [1 ]
Vaha Ouloassekpa, Romeïo [1 ]
Budisavljevic, Paul [1 ]
Le Men, Claude [1 ]
Montanier, Ceïdric [1 ]
Roblin, Pierre [2 ]
Cabane, Bernard [3 ]
Schweins, Ralf [4 ]
Dumon, Claire [1 ]
Bouchoux, Antoine [1 ]
机构
[1] Univ Toulouse, TBI, CNRS, INRAE,INSA, F-31077 Toulouse, France
[2] Univ Toulouse, Lab Genie Chim, CNRS, INPT,UPS, F-31062 Toulouse, France
[3] ESPCI Paris Tech, LCMD, CBI, F-75231 Paris, France
[4] Inst Laue Langevin, DS LSS, 71 Ave Martyrs,CS 20156, F-38042 Grenoble, France
关键词
EQUATION-OF-STATE; INTERMOLECULAR INTERACTIONS; SOLUBLE ARABINOXYLANS; OSMOTIC-PRESSURES; CELLULOSE; MUCILAGE; FERULOYLATION; SUBSTITUTION; SCATTERING; PATTERN;
D O I
10.1021/acs.biomac.3c00374
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Using small-angle neutron scattering(SANS), we examine the structureand conformational behavior of wheat arabinoxylan (AX) prepared atvarious concentrations in a sodium phosphate aqueous buffer. As foranother major hemicellulose, xyloglucan, we observe a small numberof large clusters surrounded by AX chains that behave exactly as apolymer in good solvent with a Flory exponent & nu; = 0.588. Thefit of the data at high q-values to a standard worm-likechain model gives the persistence length l (p) = 45 & ANGS; and cross section of the chains 2R (c) = 11-12 & ANGS;. In addition, using a dedicated modelingapproach, we extract from the SANS data at the intermediate q-range the correlation length & xi; of the solutionsin the semidilute regime. The decay of & xi; with concentrationfollows a scaling law that further confirms the self-avoiding statisticalbehavior of the AX chains. This first comprehensive study about theproperties of water-soluble AX at different length scales may helpin the development of products and processes involving AX as a substitutefor fossil carbon molecules.
引用
收藏
页码:3619 / 3628
页数:10
相关论文
共 50 条
  • [41] Chemotactic Signaling by Single-Chain Chemoreceptors
    Mowery, Patricia
    Ames, Peter
    Reiser, Rebecca H.
    Parkinson, John S.
    PLOS ONE, 2015, 10 (12):
  • [42] Strategies towards single-chain magnets
    Sun, Hao-Ling
    Wang, Zhe-Ming
    Gao, Song
    COORDINATION CHEMISTRY REVIEWS, 2010, 254 (9-10) : 1081 - 1100
  • [43] Single-Chain Insulins as Receptor Agonists
    Rajpal, Gautam
    Liu, Ming
    Zhang, Yi
    Arvan, Peter
    MOLECULAR ENDOCRINOLOGY, 2009, 23 (05) : 679 - 688
  • [44] Advances in Fluorescent Single-Chain Nanoparticles
    De-La-Cuesta, Julen
    Gonzalez, Edurne
    Pomposo, Jose A.
    MOLECULES, 2017, 22 (11):
  • [45] PROINSULIN - SINGLE-CHAIN PRECURSOR OF INSULIN
    CHANCE, RE
    ELLIS, RM
    ARCHIVES OF INTERNAL MEDICINE, 1969, 123 (03) : 229 - &
  • [46] Construction and characterization of a single-chain immunoglobulin
    Kim, YK
    Choi, IH
    Ryu, CJ
    Hong, HJ
    JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1997, 30 (03): : 177 - 181
  • [47] Single-chain antibodies in pancreatic cancer
    Colcher, D
    Pavlinkova, G
    Beresford, G
    Booth, BJM
    Batra, SK
    CELL AND MOLECULAR BIOLOGY OF PANCREATIC CARCINOMA: RECENT DEVELOPMENTS IN RESEARCH AND EXPERIMENTAL THERAPY, 1999, 880 : 263 - 280
  • [48] Single-Chain Magnets and Related Systems
    Coulon, Claude
    Pianet, Vivien
    Urdampilleta, Matias
    Clerac, Rodolphe
    MOLECULAR NANOMAGNETS AND RELATED PHENOMENA, 2015, 164 : 143 - 184
  • [49] Single-Chain Semiconducting Polymer Dots
    Ye, Fangmao
    Sun, Wei
    Zhang, Yue
    Wu, Changfeng
    Zhang, Xuanjun
    Yu, Jiangbo
    Rong, Yu
    Zhang, Miqin
    Chiu, Daniel T.
    LANGMUIR, 2015, 31 (01) : 499 - 505
  • [50] Compartmentalised single-chain nanoparticles and their function
    Thuemmler, Justus F.
    Binder, Wolfgang H.
    CHEMICAL COMMUNICATIONS, 2024, 60 (97) : 14332 - 14345