Ensemble-Learning Framework for Intrusion Detection to Enhance Internet of Things' Devices Security

被引:29
|
作者
Alotaibi, Yazeed [1 ]
Ilyas, Mohammad [1 ]
机构
[1] Florida Atlantic Univ, Dept Elect Engn & Comp Sci, 777 Glades Rd, Boca Raton, FL 33431 USA
关键词
ensemble learning; machine learning; internet of things; security; intrusion detection system; TON-IOT;
D O I
10.3390/s23125568
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The Internet of Things (IoT) comprises a network of interconnected nodes constantly communicating, exchanging, and transferring data over various network protocols. Studies have shown that these protocols pose a severe threat (Cyber-attacks) to the security of data transmitted due to their ease of exploitation. In this research, we aim to contribute to the literature by improving the Intrusion Detection System (IDS) detection efficiency. In order to improve the efficiency of the IDS, a binary classification of normal and abnormal IoT traffic is constructed to enhance the IDS performance. Our method employs various supervised ML algorithms and ensemble classifiers. The proposed model was trained on TON-IoT network traffic datasets. Four of the trained ML-supervised models have achieved the highest accurate outcomes; Random Forest, Decision Tree, Logistic Regression, and K-Nearest Neighbor. These four classifiers are fed to two ensemble approaches: voting and stacking. The ensemble approaches were evaluated using the evaluation metrics and compared for their efficacy on this classification problem. The accuracy of the ensemble classifiers was higher than that of the individual models. This improvement can be attributed to ensemble learning strategies that leverage diverse learning mechanisms with varying capabilities. By combining these strategies, we were able to enhance the reliability of our predictions while reducing the occurrence of classification errors. The experimental results show that the framework can improve the efficiency of the Intrusion Detection System, achieving an accuracy rate of 0.9863.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Internet of Things Intrusion Detection: A Deep Learning Approach
    Dawoud, Ahmed
    Sianaki, Omid Ameri
    Shahristani, Seyed
    Raun, Chun
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1516 - 1522
  • [22] Logistic Regression Ensemble Classifier for Intrusion Detection System in Internet of Things
    Chalichalamala, Silpa
    Govindan, Niranjana
    Kasarapu, Ramani
    SENSORS, 2023, 23 (23)
  • [23] A New Ensemble-Based Intrusion Detection System for Internet of Things
    Abbas, Adeel
    Khan, Muazzam A.
    Latif, Shahid
    Ajaz, Maria
    Shah, Awais Aziz
    Ahmad, Jawad
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (02) : 1805 - 1819
  • [24] A New Ensemble-Based Intrusion Detection System for Internet of Things
    Adeel Abbas
    Muazzam A. Khan
    Shahid Latif
    Maria Ajaz
    Awais Aziz Shah
    Jawad Ahmad
    Arabian Journal for Science and Engineering, 2022, 47 : 1805 - 1819
  • [25] Enhancing the Internet of Medical Things (IoMT) Security with Meta-Learning: A Performance-Driven Approach for Ensemble Intrusion Detection Systems
    Alalhareth, Mousa
    Hong, Sung-Chul
    SENSORS, 2024, 24 (11)
  • [26] An Intrusion Detection System for the Internet of Things Based on the Ensemble of Unsupervised Techniques
    Wang, Yao
    Sun, Guozi
    Cao, Xiaochun
    Yang, Jiale
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [27] ENSEMBLE TRANSFER LEARNING FOR BOTNET DETECTION IN THE INTERNET OF THINGS
    Aalsaud, Ali
    Kareem, Shahab wahhab
    Yousif, Raghad zuhair
    Mohammed, Ahmed salahuddin
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2024, 25 (05): : 4312 - 4322
  • [28] A voting gray wolf optimizer-based ensemble learning models for intrusion detection in the Internet of Things
    Saheed, Yakub Kayode
    Misra, Sanjay
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2024, 23 (02) : 1541 - 1556
  • [29] Intrusion detection for Industrial Internet of Things based on deep learning
    Lu, Yaoyao
    Chai, Senchun
    Suo, Yuhan
    Yao, Fenxi
    Zhang, Chen
    NEUROCOMPUTING, 2024, 564
  • [30] Blockchain based federated learning for intrusion detection for Internet of Things
    Nan Sun
    Wei Wang
    Yongxin Tong
    Kexin Liu
    Frontiers of Computer Science, 2024, 18